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ABSTRACT

Most of the image restoration filters proposed so far
include parameters that control the restoration prop-
erties. For bringing out the optimal restoration per-
formance, these parameters should be determined so
that a certain error measure such as the mean squared
error (MSE) between the restored image and original
image is minimized. However, this is not generally pos-
sible since the unknown original image itself is required
for evaluating MSE. In this article, we derive a crite-
rion called the subspace information criterion (SIC) for
linear filters. SIC gives an unbiased estimate of the ex-
pected MSE. By the use of SIC, we give a procedure
for optimizing the parameters of the moving-average
filter, i.e., the window size and weight pattern. Com-
puter simulations show that SIC gives a very accurate
estimate of MSE in various situations, and the pro-
posed procedure actually gives the optimal parameter
that minimizes MSE.

Keywords: Image restoration, Mean squared error,
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1. INTRODUCTION

Image restoration from observed images is one of the
most basic and important subjects in the fields of image
processing, pattern recognition, and computer vision.
So far, various image restoration filters have been pro-
posed. Most of the filters include parameters that con-
trol the restoration properties, e.g., the window size,
band-width, and regularization factors [7, 3, 10, 1, 2].
The restoration properties of the filters depend heavily
on the values of these parameters.

The quality of restored images is generally evalu-
ated by the mean squared error (MSE) between the re-
stored image and original image. If the parameters of
filters are determined so that MSE is minimized, then
the optimal restoration performance is expected. How-
ever, this is not generally possible since the unknown
original image itself is required for evaluating MSE.

In this article, we derive an estimate of MSE called

http://ogawa-www.cs.titech.ac.jp/ “sugi

the subspace information criterion (SIC) for linear fil-
ters, which is originated in the statistical model selec-
tion criterion [8, 9]. SIC can be calculated without
the original image. The quality of SIC as an approx-
imation of MSE is theoretically substantiated by the
fact that SIC is an unbiased estimate of the expected
MSE over the noise. Moreover, computer simulations
demonstrate that SIC gives a very accurate estimate of
MSE.

Since SIC is a good approximation of MSE, it can be
used as a substitute for MSE. That is, if the parameters
of a filter are determined so that SIC is minimized, then
the filter is expected to provide the optimal restoration
property. In this article, we will optimize the parame-
ters of the moving-average filter, i.e., the window size
and weight pattern.

2. PROBLEM FORMULATION

In this section, we formulate the problem of image
restoration following the reference [6].

Let f(x,y) be an unknown original image in a real
functional Hilbert space H;. Let g(x, y) be an observed
image in a real functional Hilbert space Hy. Note that
the domain of f(x,y) or g(z,y) can be continuous or
discrete, and Hs can be different from H;. We assume
that the observed image ¢ is given as

g=Af+n, (1)

where A is an operator from H; to Hy, and n(z,y) is
an additive noise in Hy. A is called the observation
operator. Let f(x,y) be a restored image in Hy. If a
restoration filter is denoted by X, then f is expressed
as

f=Xg. (2)

We evaluate the goodness of the restored image f by
the mean squared error (MSE):

MSE[X] = || f - fII*, (3)
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Fig. 1. Formulation of image restoration problem. f
is the unknown original image. A is the observation
operator. ¢ is the observed image. n is the additive

noise. X is a restoration filter. f is a restored image.

where || - || denotes the norm in H;. The norm is typi-
cally defined as

I1F =117 = [ (Fen) - flaw) dody. ()

Then the problem of image restoration considered
in this article is to obtain the optimally restored image
f that minimizes MSE from the observed image g. The
above formulation is summarized in Fig. 1.

3. SUBSPACE INFORMATION CRITERION
FOR IMAGE RESTORATION

Since MSE includes the unknown original image f, it
can not be directly evaluated. In this section, we derive
an estimate of MSE called the subspace information
criterion (SIC), which can be calculated without the
original image f.

In the derivation of SIC, the following conditions
are assumed.

1. A filter X is linear.
2. The mean noise is zero:

E,n =0, (5)

where E,, is the expectation over the noise.

3. A linear filter X,, that gives an unbiased estimate
fu of the original image f is available:

Enfu = fa (6)
where
fu = Xug. (7)

. The main idea of SIC is that the unbiased estimate
fu is used for estimating MSE (Fig. 2).

H,y

Fig. 2. Basic idea of SIC. The solid line denotes the
bias of f. It can be roughly estimated by the dotted
line, which can be calculated (see the text for detail).

Tt follows from Eq.(3) that the expectation of MSE
over the noise is decomposed as

E.MSE[X] = E,[|f —Enf +Enf - /I
= Ean - EanQ + 2En<f - Enfv E.f—f)
+Eu|[Enf — fI?
=Eullf —Euf|? + |Eaf - I, (3)
where (-, -) denotes the inner product in H;. The first
and second terms in Eq.(8) are called the variance and
bias of f, respectively.

Let @ be the noise covariance operator. Then it
follows from Eqgs.(2), (1), and (5) that the variance of

f is expressed as

Ean - EanQ =E,[|Xg - EnXgH2
=B, X(Af +n) — B, X(Af +n)?
= E, || Xnl?
=tr(XQX"), (9)
where X* denotes the adjoint of X, and tr(-) denotes

the trace of an operator. It follows from Egs.(6), (2),
and (7) that the bias of f is expressed as

IEnf = fII°
= If = ful® = IIf = Full® + |Eaf = 7117
=If = full?

~NEa(f = fu) =Enlf = fu) + [ = full?
+|EnS — Enfull?

= [1Xg = Xugll® = |Ea(f = f)II?
+2(En(f = fu)  Eal(f = fu) = (F = fu))
—En(f = fu) = (f = f)I? +I[Ea(f = f)II?

= (X — Xu)gl”
+2<En(f_ fu)7En(f_ fu) - (f_ fu)>
_”En(f_ fu) - (f_ fu)||2 (10)



The second and third terms in Eq.(10) can not be di-
rectly evaluated since they include an unknown term
En(f — fu), so we will average out the second and third
terms in Eq.(10) over the noise. Then the second term
vanishes and it follows from Eqgs.(2), (7), (1), and (5)
that the third term yields

Bn (—IBa(f = fu) = (F = f)I?)
= “Eu[Ea(X = Xu)g - (X = X,)g]*
= —Ep||En(X — Xu)(Af +n)
(X = X)(Af + )|
= “Ea[[(X — X,)n|]
=t (X - X)Q(X - X)), (1)

Then we have the following criterion.
Definition 1 (Subspace information criterion)
The following functional SIC is called the subspace
information criterion for a linear filter X :
SICIX] = [|(X — Xu)glI*
- tI‘((X - XU)Q(X - Xu)*)
+tr (XQX™). (12)
The goodness of SIC as an approximation of MSE

is theoretically substantiated by the following theorem.

Theorem 1 For any linear filter X, SIC is an unbi-
ased estimate of the expected MSE over the noise:

E,SIC[X] = E,MSE[X]. (13)

(Proof) It follows from Egs.(12), (1), (5), (2), and
(7) that the first term in SIC yields
En[|(X — Xu)g]l?
= En[|(X — Xu)(Af +n)|?
= (X = X)AS|? + Enll(X = Xu)nlf?
= (X — Xu)Eng|?
+tr (X — X)Q(X
= [Enf = fI? +tr (X
It follows from Egs.(12), (14), (9), and (8) that

— X))
— X)Q(X — X,)").(14)

E,SIC[X] = [[Enf — f]* + tr (XQX™)
= E,MSE[X], (15)
which concludes the proof. [ |

Based on Theorem 1, we will use SIC as a substitute
for MSE in the following sections.

4. OPTIMIZATION OF
MOVING-AVERAGE FILTER BY SIC

In this section, we give a method for optimizing the
parameters of the mowving-average filter [3], which is
one of the classic but effective filters.

4.1. Setting

Let H; and H> be sets of discrete images of size D x D,
ie., f(x,y) and g(x,y) are defined on

{1,2,...,D}x{1,2,...,D}. (16)

Let us define the norm in H; as

D

1717 =55 32 (). (17)

z,y=1

Then Eq.(3) yields a typical definition of MSE in the
discrete case:

MSE[X D2 Z (f,

z,y=1

~few) . )

Let I be the identity operator on H; (= Hs). We
assume that the observation operator A and the noise
covariance operator () are given as

A=1, (19)

Q=0a"l, (20)
where 02 > 0. In this case, the observed image g is
given as

g=f+n. (21)

This implies that g itself is an unbiased estimate of the
original image f:

E.g=f. (22)
For this reason, we use the identity operator as X,:
X, =1 (23)
Note that in the current setting, SIC agrees with
the traditional Cp-statistics [4, 5].
4.2. Moving-average filter

The moving-average filter (MAF) restores the image by
the weighted sum of the brightness of nearby pixels:

33 y C ey ;wl,]g Zvy _.j)7 (24)

where ZZ ; 18 taken over integers ¢ and j such that

The integer W (> 0) is called the window size, and the
set {wi ;},"j—_yw of scalars is called the weight pattern.
The scalar Cy , is defined as

Cm,y = Zwi,jv (27)
]



where }, ; is taken over Eqs.(25) and (26), which de-
pends on z and y. We assume that C; , is not zero for
any x and y.

In the case of MAF, the window size W and weight
pattern {w; ;},;__y are the parameters.
4.3. SIC for moving-average filter

By the use of SIC, the parameters can be optimized as
follows. First, a set M of filters with different values
of the parameters is prepared.

M ={X}. (28)

Then SIC is calculated for each filter X in the set M,
and the filter X that minimizes SIC is selected:

X = argmin SIC[X], (29)
XeM

where SIC in the current setting is given as

SIC[X D2 Z ( g(x y))2

z,y=1

+ 20%tr (X) — o (30)

The values of the parameters in X is expected to be the
best. Indeed, the expectation is theoretically supported
by Theorem 1, and experimentally demonstrated in
Section 5.
Ignoring the effect of verge pixels, we have
1 & Wo,0 _ Wo,0
D? Cpy = C

z,y=1

tr(X) =

(31)
where the constant C' is defined as

Z w; ;. (32)

Then SIC is approximated as

SIC[X D2 Z (

2

9(x y))
z,y=1

20’210070 2

o (33)

which can be calculated efficiently.

5. COMPUTER SIMULATIONS

In this section, the effectiveness of SIC for MAF is
demonstrated through computer simulations.

Let us consider (i) Lena, (ii) Peppers, and (iii) Girl
shown in Fig. 3 as original images. The size D of

the images is 256 and the values {f(x,y)}3°0_; of the

brightness are integers from 0 to 255. We suppose that
the noises {n(z,y)}2_, are independently subject to
the same normal dlbtrlbution with mean zero and vari-
ance o2. In this case, the noise covariance operator Q
is given by Eq.(20). We calculate SIC by Eq.(33). As
candidates of the parameters of MAF, we consider six
different window sizes W:

W=0,1,...,5. (34)

For each W, we consider the following three weight
patterns.

(a) Rhombus pattern:
w((;) =max(0, W + 1 —|i| — |5]). (35)

z7

(b) Pyramid pattern:
w) =W+ 1—max(il.ljl).  (36)
(c) Gauss pattern:

() B 1 Z‘2 + j2
= g (awap) o)

The above weight patterns for W = 2 are illustrated
in Fig. 4.

Figs. 5, 6, and 7 display the simulation results
when the noise variance o2 is 900, 1600, and 2500, re-
spectively. The top rows show the degraded images
{g9(z,y)}2%_,. Their MSEs measured by Eq.(18) are
described below the images. The middle rows show the
values of MSE and SIC corresponding to each filter.
The horizontal axis denotes the window size W. The
bottom rows show the restored images by SIC. Below
the images, selected filter parameters and MSEs of the
restored images are described. ‘OPT’ indicates the op-
timal parameters that minimize MSE.

The graphs in the middle rows show that SIC gives
a very accurate estimate of MSE irrespective of the
type of the original image, noise variance, window size,
and weight pattern. The restored images in the bottom
rows show that the filter parameter that minimizes SIC
actually minimizes MSE, i.e., the optimal filter param-
eter can be obtained by SIC.

6. CONCLUSIONS

We derived an unbiased estimate of the expected mean
squared error for linear filters. We named the esti-
mate the subspace information criterion (SIC) follow-
ing model selection publications. By the use of SIC,
we proposed a procedure for optimizing the parame-
ters of the moving-average filter. Computer simulations
showed that SIC gives a very accurate estimate of MSE
in various situations, and the proposed procedure actu-
ally gave the optimal parameter that minimizes MSE.

SIC is valid for any linear filters. Applying SIC to
other efficient filters is prospective future work.
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Fig. 3. Original images.
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(a) Rhombus pattern

(b) Pyramid pattern

(c) Gauss pattern

Fig. 4. Normalized weight patterns for the window size W = 2.
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Fig. 5. Simulation results when o2 = 900. The top row shows the degraded images. Their MSEs are described
below. The middle row shows the values of MSE and SIC corresponding to each filter. The horizontal axis denotes
the window size W. The bottom row shows the restored images by SIC. Selected filter parameters and MSEs of
the restored images are described below. ‘OPT’ indicates the optimal parameters that minimizes MSE.
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Fig. 6. Simulation results when o2 = 1600. The top row shows the degraded images. Their MSEs are described
below. The middle row shows the values of MSE and SIC corresponding to each filter. The horizontal axis denotes
the window size W. The bottom row shows the restored images by SIC. Selected filter parameters and MSEs of
the restored images are described below. ‘OPT’ indicates the optimal parameters that minimizes MSE.
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Fig. 7. Simulation results when o2 = 2500. The top row shows the degraded images. Their MSEs are described
below. The middle row shows the values of MSE and SIC corresponding to each filter. The horizontal axis denotes
the window size W. The bottom row shows the restored images by SIC. Selected filter parameters and MSEs of
the restored images are described below. ‘OPT’ indicates the optimal parameters that minimizes MSE.



