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Abstract

Recently, a new model selection criterion called
the subspace information criterion (SIC) was pro-
posed. SIC gives an unbiased estimate of the gen-
eralization error with finite samples. In this pa-
per, we theoretically and experimentally evaluate
the effectiveness of SIC in comparison with exist-
ing model selection techniques. Theoretical evalu-
ation includes the comparison of the generalization
measure, approximation method, and restriction on
model candidates and learning methods. The sim-
ulations show that SIC outperforms existing tech-
niques especially when the number of training ex-
amples is small and the noise variance is large.

1 Introduction

Supervised learning is estimating unknown input-
output dependency from available input-output ex-
amples. Once the dependency has been accurately
estimated, it can be used for predicting output val-
ues corresponding to novel input points. This ability
is called the generalization capability.

The level of the generalization capability depends
heavily on the choice of the model, which indicates,
for example, the number and type of basis func-
tions used for learning. The problem of choosing
the model that provides the optimal generalization
capability is called model selection. Model selection
has been extensively studied from various stand-
points: information statistics [1][2][3][4], Bayesian
statistics [5], stochastic complexity [6], and struc-
tural risk minimization principle [7][8].

Recently, a new model selection criterion called
the subspace information criterion (SIC) was pro-
posed by the authors [9]. SIC gives an unbiased
estimate of the generalization error with finite sam-
ples. In this paper, we evaluate the effectiveness
of SIC in comparison with existing model selection
techniques.

1A detailed version of this article is to appear in Machine
Learning, Special Issue on New Methods for Model Selection
and Model Combination, 2001.

2E-mail: sugi@og.cs.titech.ac.jp, URL: http://ogawa-
www.cs.titech.ac.jp/˜sugi, FAX: +81-3-5734-2949.

2 Subspace information criterion (SIC) for
subset regression

Let us consider the regression problem of obtain-
ing, from a set of M training examples, an approxi-
mation to a target function f(x) of L variables de-
fined on D ⊂ RL. The training examples are made
up of sample points xm ∈ D and corresponding sam-
ple values ym ∈ R. We suppose that ym is degraded
by additive noise εm, i.e., ym = f(xm) + εm.

Let θ be a set of factors which determine learning
result functions, for example, the type and number
of basis functions. We call θ a model. Let f̂θ(x) be
a learning result function obtained with a model θ.
We measure the generalization error of f̂θ(x) by

JG[θ] = Eε

∫
(f̂θ(u) − f(u))2p(u)du, (1)

where Eε denotes the ensemble average over the
noise and p(·) is the probability density function of
future (test) input points u. Then the problem of
model selection considered in this paper is to select,
from a set M of model candidates, the best model
θ̂ that minimizes the generalization error JG.

The model selection criterion called the subspace
information criterion (SIC) [9] gives an unbiased
estimate of the generalization error JG. Here, we
briefly review SIC for subset regression.

The following conditions are assumed:
(a) The learning target function f(x) is a linear

combination of a given set {ϕp(x)}µ
p=1 of µ linearly

independent functions.
(b) The M ×µ-dimensional design matrix A with

(m, p)-th element being ϕp(xm) has the rank µ.
(c) The number M of training examples is larger

than the number µ of basis functions.
(d) The mean noise is zero and the noise covari-

ance matrix is given as σ2IM where σ2 > 0 and IM

is the M -dimensional identity matrix.
(e) The µ-dimensional covariance matrix U with

(p, p′)-element being
∫

ϕp′ (u)ϕp(u)p(u)du is known.
(f) A model θ indicates a subset of indices

{1, 2, . . . , µ}, and the learning result function f̂θ(x)
is defined as a minimizer of the training error
1
M

∑M
m=1(f̂(xm) − ym)2 in a subspace spanned by



{ϕp(x)}p∈θ. In this case, f̂θ(x) is given as

f̂θ(x) =
∑

p∈θ[A
†
θy]pϕp(x), (2)

where Aθ is an M × µ matrix with (m, p)-th ele-
ment being ϕp(xm) if p ∈ θ otherwise 0. A†

θ denotes
the Moore-Penrose generalized inverse of Aθ and [·]p
denotes the p-th element of a vector.

Under the above assumptions, SIC is given as

SIC[θ] = 〈U(A†
θ − A†)y, (A†

θ − A†)y〉
− σ̂2tr(U(A†

θ − A†)(A†
θ − A†)�)

+ σ̂2tr(UA†
θ(A

†
θ)

�), (3)

where σ̂2 = 〈y − AA†y, y〉/(M − µ) and � denotes
the transpose of a matrix. It is shown that SIC is
an unbiased estimate of JG [9]:

Eε SIC[θ] = JG[θ]. (4)

3 Theoretical evaluation of SIC
In this section, SIC is compared with the tra-

ditional leave-one-out cross-validation (CV), Mal-
lows’s CP [10], Akaike’s information criterion (AIC)
[1], Sugiura’s corrected AIC (cAIC) [2], Schwarz’s
Bayesian information criterion (BIC) [5], Rissanen’s
minimum description length criterion (MDL) [6],
and Vapnik’s measure (VM) [8].

3.1 Generalization measure

SIC can adopt any generalization measure ex-
pressed as Eε‖f̂θ − f‖2 as long as it is computable
(e.g. the covariance matrix U is known). ‖·‖ denotes
the norm in the functional Hilbert space spanned by
{ϕp(x)}µ

p=1. The derivatives of the functions f̂θ(x)
and f(x) can also be included in the generalization
measure (with the Sobolev norm).

CP adopts the predictive training error
1
M Eε

∑M
m=1(f̂θ(xm) − f(xm))2 as the error mea-

sure, which is equivalent to Eq.(1) with p(u) being
replaced by the empirical distribution. Note that
the predictive training error does not evaluate the
error at future sample points u.

CV adopts the so-called leave-one-out error
1
M

∑M
m=1(f̂

(m)
θ (xm) − ym)2 as the error measure,

where f̂
(m)
θ denotes the learning result function ob-

tained with the training examples without (xm, ym).
The leave-one-out error also does not directly eval-
uate the error at future sample points u. The rela-
tion between the leave-one-out error and Eq.(1) is
not well recognized yet.

AIC and cAIC adopt the expected Kullback-
Leibler information over all possible training sets

{(xm, ym)}M
m=1 as the generalization measure, which

is conceptually similar to the expectation of Eq.(1)
over training sample points {xm}M

m=1 [3]. Although
p(·) can be unknown in AIC and cAIC, instead
training sample points {xm}M

m=1 and future sam-
ple points u are assumed to be independently sub-
ject to the same probability density function p(·)
and the generalization measure is further averaged
over training sample points. If one adopts the gen-
eralization measure averaged over training sample
points, the purpose of model selection is to obtain
the model that gives good learning result functions
on average. In contrast, if one adopts the general-
ization measure which is not averaged over training
sample points, the purpose of model selection is to
obtain the model that gives the optimal learning re-
sult function from a given, particular training set.
This implies that the latter standpoint is suitable
for acquiring the best prediction performance from
given training examples.

BIC gives an estimate of the posterior probability
of parameters, and MDL gives an estimate of the
description length of the model and data. The re-
lation between the posterior probability, description
length of the model and data, and generalization
error is not clear.

The generalization measure of VM is a probabilis-
tic upper bound of the risk functional

∫
(f̂θ(u) −

f(u))2p(u)du, where p(·) can be unknown but train-
ing sample points {xm}M

m=1 and future sample
points u are assumed to be independently subject to
the same probability density function p(·) instead.

3.2 Approximation methods

CP , AIC, cAIC, BIC, MDL, and VM are ex-
pressed with the training error 1

M

∑M
m=1(f̂θ(xm) −

ym)2. In contrast, CV and SIC directly evaluate the
error measures.

CP is an unbiased estimate of the predictive train-
ing error with finite samples. Since the predictive
training error asymptotically agrees with the gen-
eralization error Eq.(1) if training sample points
{xm}M

m=1 are subject to p(·), it can be regarded
as an approximation of Eq.(1). Although asymp-
totic optimality of CP is shown, its effectiveness with
small samples is not theoretically sure.

In CV, the leave-one-out error can be regarded as
an approximation of the generalization error (i.e.,
the error at future sample points u) since it is shown
that the model selection by CV is asymptotically
equivalent to that by AIC. Although it is known
that CV practically works well, its mechanism in
small sample cases is not well recognized yet.



Although AIC directly evaluates the generaliza-
tion error, it is assumed in the derivation that the
number of training examples is very large. This
means that when the number of training examples is
small, the approximation is no longer valid. BIC and
MDL also use asymptotic approximation so they
have the same drawback.

cAIC, VM, and SIC do not assume the availability
of a large number of training examples for evaluating
the generalization error. Therefore, they will work
well with small samples. cAIC is a modified AIC
with consideration of small sample effect for faith-
ful models (i.e., models which include the learning
target function). However, its performance for un-
faithful models is not sure. VM gives a probabilistic
upper bound of the risk functional based on the VC
theory [7]. Although VM is derived under general
setting, some heuristics are used in its derivation
and the tightness of the upper bound is not evalu-
ated yet.

SIC utilizes only the noise characteristics in its
derivation, and it gives an unbiased estimate of the
generalization error JG with finite samples. How-
ever, its variance is not theoretically investigated
yet. In order to calculate SIC, rather restrictive
conditions should be assumed (see Sec. 2). How-
ever, these conditions do not have to be rigorously
satisfied in practice. For example, when basis func-
tions {ϕp(x)}µ

p=1 which include the learning target
function f(x) are unknown (see Assumption (a) in
Sec .2), basis functions {ϕp(x)′}µ′

p=1 with the follow-
ing properties are practically adopted:

(i) {ϕp(x)′}µ′
p=1 approximately include the learn-

ing target function f(x).
(ii) The number µ′ of basis functions is less than

the number M of training examples.
When the covariance matrix U (see Assumption

(e) in Sec. 2) is unknown, it can be estimated
by using unlabeled sample points {x′

m}M ′
m=1 (i.e.,

sample points without sample values {y′m}M ′
m=1) as

[Û ]p,p′ = 1
M ′

∑M ′

m=1 ϕp′ (x′
m)ϕp(x′

m). If the training
sample points {xm}M

m=1 are used instead of unla-
beled sample points, then SIC agrees with Mallows’s
CP . For this reason, SIC can be regarded as an ex-
tension of CP (see also [9]).

3.3 Restriction on model candidates

AIC and cAIC are valid only when model can-
didates in the set M are nested [11][3], the fact is
known to those who work on AIC, but it is still not
well known to those who apply AIC in practice. In
contrast, SIC imposes no restriction on models.

3.4 Restriction on learning methods

AIC, cAIC, BIC, and MDL are specialized for
maximum likelihood estimation. A generalized AIC
[3][4] relaxed the restriction of maximum likelihood
estimation. CP is specialized for the training error
minimization learning with linear regression models.
An extension of CP called CL [10], VM, and SIC are
applicable to various learning methods expressed by
linear mapping (A†

θ in Eq.(2)), including regulariza-
tion learning with quadratic regularizers (ridge re-
gression). Note that in VM, the VC-dimension [7]
of models should be explicitly calculated.

4 Experimental evaluation of SIC

In this section, SIC is experimentally compared
with existing model selection techniques through
computer simulations.

Let the learning target function f(x) be
f(x) = 1

10

∑50
p=1(sin px+cos px) defined on [−π, π].

Let us consider a set of 201 basis functions
{1, sinpx, cos px}100

p=1 which includes f(x). Let
the set M of model candidates be M =
{θ0, θ10, θ20, . . . , θ100}, where θn indicates a regres-
sion model with {1, sinpx, cospx}n

p=1. Let us as-
sume that the training sample points {xm}M

m=1 and
future sample points u are independently subject to
the same uniform distribution on [−π, π]. Let the
noise εm be independently subject to the same nor-
mal distribution with mean 0 and variance σ2. We
compare SIC, CV, CP , AIC, cAIC, BIC (which is
the same as MDL), and VM. Note that the covari-
ance matrix U (see Assumption (e) in Sec. 2) is the
identity matrix in the above setting. We shall mea-
sure the error of a learning result function f̂θn(x) by
1
2π

∫ π

−π
(f̂θn(x) − f(x))2dx.

The simulation is performed 100 times with
changing the noise {εm}M

m=1 in each trial. Fig. 1
show the distributions of the selected order n of
models (upper) and error obtained by the selected
model (lower) by 100 trials. ‘OPT’ indicates the
optimal model that minimizes the error. When
(M, σ2) = (500, 0.2), all model selection criteria
work well. When (M, σ2) = (250, 0.2), AIC tends
to select larger models and BIC (MDL) is inclined
to select smaller models, so they provide large er-
rors. This may be caused since AIC and BIC (MDL)
are derived under the assumption that the num-
ber M of training examples is very large. When
(M, σ2) = (500, 0.6), BIC (MDL) and VM show a
tendency to select smaller models and they result
in large errors. This implies that BIC (MDL) and
VM are not robust against the noise. Finally, when
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Fig. 1. Distributions of the selected order and error by 100 trials.

(M, σ2) = (250, 0.6), SIC works better than other
criteria. In this case, CP almost always selects θ50,
AIC tends to select larger models, and other criteria
tend to select smaller models. As a result, they give
large errors.

The simulation results show that SIC outperforms
other model selection criteria especially when the
number M of training examples is small and the
noise variance σ2 is large. It should be noted that
CP almost always selects the true model θ50 in any
cases. This implies that CP is more suitable for
finding the true model than finding the model with
minimum generalization error.
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