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Abstract

The problem of designing input signals for optimal generalization is called active
learning. In this paper, we give a two-stage sampling scheme for reducing both
the bias and variance, and based on this scheme, we propose two active learning
methods. One is the multi-point-search method applicable to arbitrary models. The
effectiveness of this method is shown through computer simulations. The other is
the optimal sampling method in trigonometric polynomial models. This method
precisely specifies the optimal sampling locations.
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1 Introduction

Supervised learning is obtaining an underlying rule from sampled information. Depending
on the type of sampling, supervised learning can be classified into two different categories.
One is the case where information is given unilaterally from the environment. For example,
in time series prediction, sample points are fixed to regular intervals and learners can not
change the interval. The other is the case where learners can design input signals by
themselves and sample corresponding output signals. For example, it is possible to design
input signals in many scientific experiments or learning of sensorimotor maps of multi-
joint robot arms. Learning can be performed more efficiently if we can actively design
input signals.

The problem of designing input signals for optimal generalization is called active learn-
ing (Cohn, Ghahramani, & Jordan, 1996; Fukumizu, 1996; Vijayakumar & Ogawa, 1999).
It is also referred to as optimal experiments (Kiefer, 1959; Fedorov, 1972; Cohn, 1994)
or query construction (Sollich, 1994). Reinforcement learning (Kaelbling, 1996), which
has been extensively studied recently in the field of machine learning, can be regarded as
another form of active learning.

In mathematical statistics, an active learning criterion called the D-optimal design has
been thoroughly studied (Kiefer, 1959; Kiefer & Wolfowitz, 1960; Fedorov, 1972). The
D-optimal design minimizes the determinant of the dispersion matrix of the estimator.
One of the advantages of the D-optimal design is that it is invariant under all affine
transformations in the input space (Kiefer, 1959). Kiefer and Wolfowitz (1960) showed
that the D-optimal design agrees with the minimax design when the noise variance is the
same magnitude all over the domain. The minimax design is aimed at finding the sample
points {xj} minimizing the maximum of the noise variance:

argmin
{xj}

max
x

En|f0(x)− f(x)|2, (1)

where En, f0, and f are the ensemble average over the noise, a learning result, and the
learning target function, respectively. In order to find the optimal design of sample points,
the learning criterion prescribing the mapping from training examples to a learning result
has to be determined. In a general approach to the D-optimal design, best linear unbiased
estimation is adopted as a learning criterion, which is aimed at minimizing the mean
noise variance over the domain under the constraint of unbiasedness. This implies that
the criterion for the D-optimal design is inconsistent with the criterion for best linear
unbiased estimation, causing a crucial problem for acquiring the optimal generalization
capability.

Within the framework of Bayesian statistics, MacKay (1992) derived a criterion for
selecting the most informative training data for specifying the parameters of neural net-
works. Cohn (1994, 1996) and Cohn, Ghahramani, and Jordan (1996) gave an active
learning criterion for minimizing the variance of the estimator. Fukumizu (1996) proposed
an active learning method in multi-layer perceptrons using asymptotic approximation for
estimating the generalization error. Essentially, the criteria derived in these papers are
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equivalent to the A-optimal design shown in Fedorov (1972). However, it is generally
intractable to calculate the value of the criteria and difficult to find the optimal solution.
MacKay (1992) proposed to use a fixed set of reference points for estimating the value
of the criterion. Cohn, Ghahramani, and Jordan (1996) recommended to use the Monte
Carlo sampling for estimating the value of the criterion, and Cohn (1996) used the gradi-
ent method for finding a local optimum of the criterion. Fukumizu (1996) introduced a
parametric family of the density function for generating sampling locations.

In the above approaches, the active learning criteria are aimed at minimizing the vari-
ance of the estimator. However, as shown in Geman, Bienenstock, and Doursat (1992),
the generalization error consists of the bias and variance. This implies that the above
methods assume that the bias is zero or small enough to be neglected. Yue and Hickernell
(1999) showed an upper bound of the generalization error and derived an active learning
criterion for minimizing the upper bound. However, this criterion includes an unknown
controlling parameter of the trade-off between the bias and variance, so the optimal solu-
tion can not be obtained. Cohn (1997) used resampling methods such as the bootstrapping
(Efron & Tibshirani, 1993) and the cross-validation (Stone, 1974) for estimating the bias,
and proposed an active learning method for reducing the bias. His experiments showed
that the bias-only approach outperforms the variance-only approach. From the functional
analytic point of view, Vijayakumar and Ogawa (1999) gave a necessary and sufficient
condition of the sampling locations to provide the optimal generalization capability in
the absence of noise. In this condition, the bias is explicitly evaluated by utilizing the
knowledge of the distribution of the learning target functions. Vijayakumar, Sugiyama,
and Ogawa (1998) extended the condition to the noisy case by dividing the sampling
scheme into two stages. The first stage is for reducing the bias and the second stage is
for reducing the variance with the small bias attained in the first stage maintained.

In this paper, we propose two active learning methods in the presence of noise. One
is the multi-point-search method applicable to arbitrary models. The effectiveness of
this method is shown through computer simulations. The other is the optimal sampling
method in trigonometric polynomial models. This method precisely specifies the optimal
sampling locations. Both methods are based on the idea of the two-stage sampling scheme
proposed in Vijayakumar, Sugiyama, and Ogawa (1998). The difference is that a priori
knowledge of the distribution of the target functions is not required in the present paper.
This paper is organized as follows. In Section 2, the supervised learning problem is
formulated. Section 3 describes a general learning process and requirements for acquiring
the optimal generalization capability. Section 4 is devoted to giving a basic sampling
strategy. Based on this strategy, Section 5 gives the multi-point-search method and
Section 6 gives the optimal sampling method in trigonometric polynomial models. Finally,
computer simulations are performed in Section 7, demonstrating the effectiveness of the
proposed methods.



Incremental Active Learning for Optimal Generalization 4

2 Formulation of supervised learning problem

In this section, the supervised learning problem is formulated from the functional analytic
point of view (see Ogawa, 1989, 1992).

Let us consider a supervised learning problem of obtaining the optimal approximation
to a target function f(x) of L variables from a set of m training examples. The training
examples are made up of input signals xj in D, where D is a subset of the L-dimensional
Euclidean space RL, and corresponding output signals yj in the unitary space C:

{(xj, yj) | yj = f(xj) + nj}mj=1, (2)

where yj is degraded by zero-mean additive noise nj . Let n(m) and y(m) be m-dimensional
vectors whose j-th elements are nj and yj, respectively. y(m) is called a sample value
vector, and a space to which y(m) belongs is called a sample value space. In this paper,
the target function f(x) is assumed to belong to a reproducing kernel Hilbert space H
(Aronszajn, 1950; Bergman, 1970; Saitoh, 1988, 1997; Wahba, 1990). If H is unknown,
then it can be estimated by model selection methods (e.g. Akaike, 1974; Sugiyama &
Ogawa, 1999d). The reproducing kernel K(x, x′) is a bivariate function defined on D×D
which satisfies the following conditions.

• For any fixed x′ in D, K(x, x′) is a function of x in H .

• For any function f in H and for any x′ in D, it holds that

〈f(·), K(·, x′)〉 = f(x′), (3)

where 〈·, ·〉 denotes the inner product.

Note that the reproducing kernel is unique if it exists. In the theory of the Hilbert space,
arguments are developed by regarding a function as a point in that space. Thus, the value
of a function at a point can not be discussed within the general framework of the Hilbert
space. However, if the Hilbert space has the reproducing kernel, then it is possible to deal
with the value of a function at a point. Indeed, if a function ψj(x) is defined as

ψj(x) = K(x, xj), (4)

then the value of f at a sample point xj is expressed as

f(xj) = 〈f, ψj〉. (5)

For this reason, ψj is called a sampling function. Let Am be an operator mapping f to
an m-dimensional vector whose j-th element is f(xj):

Amf = (f(x1), f(x2), · · · , f(xm))�, (6)
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Figure 1: Supervised learning as an inverse problem.

where � denotes the transpose of a vector. We call Am a sampling operator. Note that
Am is always a linear operator even when we are concerned with a non-linear function
f(x). Indeed, Am can be expressed as

Am =
m∑
j=1

(
e
(m)
j ⊗ ψj

)
, (7)

where e
(m)
j is the j-th vector of the so-called standard basis in Cm and (· ⊗ ·) stands

for the Neumann-Schatten product1. Then, the relationship between f and y(m) can be
expressed as

y(m) = Amf + n(m). (8)

Let fm be a learning result obtained fromm training examples and let us denote a mapping
from y(m) to fm by Xm:

fm = Xmy
(m), (9)

where Xm is called a learning operator. Then, the supervised learning problem is refor-
mulated as an inverse problem of obtaining Xm providing the best approximation fm to
f under a certain learning criterion (Fig.1).

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten
product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as (Schatten, 1970)

(f ⊗ g)h = 〈h, g〉f.
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Figure 2: General process for supervised learning.

3 Learning process

In this section, we show a general process for supervised learning and describe require-
ments for optimal generalization.

3.1 Requirements for optimal generalization

Supervised learning is generally processed as illustrated in Fig.2. First of all, the learning
criterion is determined in accordance with the purpose of learning. Then, (i) what data
to gather is decided and sample values are gathered at the decided locations. By using
the gathered training examples, (ii) a learning procedure is carried out and the obtained
learning result is evaluated. If the learning result is satisfactory, then the learning process
is completed. Otherwise, training examples are added to improve the learning result until
it becomes satisfactory. In this paper, training examples are sampled and added one by
one along with the process.

In practical situations, the number of training examples is always finite. Hence, for
acquiring the optimal generalization capability through this learning process, the following
requirements should be met in the non-asymptotic sense.
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(a) The criterion for active learning is consistent with the purpose of learning.

(b) The active learning method precisely specifies the optimal sample points.

(c) The incremental learning method provides exactly the same generalization capability
as that obtained by batch learning with all training examples.

Strictly speaking, optimal in the requirement (b) has two meanings. One is the globally
optimal, where a set of all training examples is optimal (e.g. Sugiyama & Ogawa, 2000).
The other is the greedy optimal, where the next training example to sample is optimal
in each step (e.g. MacKay, 1992; Cohn, 1994, 1996; Fukumizu, 1996). In this paper, we
focus on the latter greedy case and devise an incremental active learning method meeting
the above requirements. In the rest of this section, we review projection learning and a
method of incremental projection learning which meets the requirement (c).

3.2 Projection learning

As mentioned in Section 2, function approximation is performed on the basis of a learning
criterion. Our purpose of learning in this paper is to minimize the generalization error of
the learning result fm measured by

JG = En‖fm − f‖2. (10)

Then, the following proposition holds.

Proposition 1 (Takemura, 1991) It holds that

JG = ‖Enfm − f‖2 + En‖fm −Enfm‖2. (11)

The first and second terms of Eq.(11) is called the bias and variance of fm, respectively.
Let us restrict our discussion within the case where the learning operator Xm in Eq.(9) is
linear. Then, it follows from Eqs.(9) and (8) that the learning result fm can be decomposed
as

fm = XmAmf +Xmn
(m). (12)

In this case, it follows from Eq.(12) that

Enfm = XmAmf, (13)

and hence the mean of fm over the noise belongs to R(XmAm), where R(·) denotes the
range of an operator. Let PS be the orthogonal projection operator onto a subspace S.
In order to minimize the bias of fm, XmAmf should agree with the orthogonal projection
of f onto R(XmAm):

XmAmf = PR(XmAm)f. (14)

From Albert (1972), the operator equation

XmAm = PS (15)
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has a solution if and only if S ⊂ R(A∗
m), where A∗

m denotes the adjoint operator of Am.
Since bigger R(XmAm) provides better approximation, we adopt the largest one:

R(XmAm) = R(A∗
m). (16)

For this reason, R(A∗
m) is called the approximation space. In order to reduce the gener-

alization error, the variance of fm should be minimized. This learning method is called
projection learning :

Definition 1 (Projection learning) (Ogawa, 1987) An operator Xm is called the pro-
jection learning operator if Xm minimizes the functional

JP [Xm] = En‖Xmn
(m)‖2 (17)

under the constraint
XmAm = PR(A∗

m). (18)

Let A†
m be the Moore-Penrose generalized inverse2 of Am. Then, the following propo-

sition holds.

Proposition 2 (Ogawa, 1987) A general form of the projection learning operator is ex-
pressed as

Xm = V †
mA

∗
mU

†
m + Ym(Im − UmU †

m), (19)

where Ym is an arbitrary operator from Cm to H and

Qm = En
(
n(m) ⊗ n(m)

)
, (20)

Um = AmA
∗
m +Qm, (21)

Vm = A∗
mU

†
mAm. (22)

Substituting Eqs.(12), (13), and (18) into Eq.(11), we have

JG = ‖PR(A∗
m)f − f‖2 + En‖Xmn

(m)‖2. (23)

Eq.(23) implies that projection learning reduces the bias of fm to a certain level and
minimizes the variance of fm.

There are various methods for calculating the projection learning operator Xm and
the projection learning result fm by matrix operation. Here, we show one of the simplest
methods valid for all finite dimensional Hilbert spaces H .

2An operator X is called the Moore-Penrose generalized inverse of an operator A if X satisfies the
following four conditions (Albert, 1972; Ben-Israel & Greville, 1974).

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

Note that the Moore-Penrose generalized inverse is unique and denoted as A†.
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When the dimension of H , denoted by µ, is finite, functions in H can be expressed in
the form of

f(x) =
µ∑
k=1

akϕk(x), (24)

where {ϕk}µk=1 is an orthonormal basis in H and {ak}µk=1 is its coefficients. Let us consider
a µ-dimensional parameter space in which functions in H are expressed as

f = (a1, a2, · · · , aµ)�. (25)

If we regard this parameter space as H , then the sampling function ψj is expressed as

ψj = (ϕ1(xj), ϕ2(xj), · · · , ϕµ(xj))∗, (26)

where (a1, a2, · · · , aµ)∗ denotes the complex conjugate of the transpose of (a1, a2, · · · , aµ).
Hence, the sampling operator Am becomes an m× µ matrix whose (j, k)-element is

[Am]jk = ϕk(xj). (27)

This Am is sometimes called the design matrix (Efron & Tibshirani, 1993). Then, the
projection learning operator obtained by Eq.(19) becomes an µ × m matrix, and the
projection learning result fm obtained by Eq.(9) becomes a µ-dimensional vector:

fm = (b1, b2, · · · , bµ)�. (28)

From this, we have the learning result function fm(x) as

fm(x) =
µ∑
k=1

bkϕk(x). (29)

In practice, the calculation of the Moore-Penrose generalized inverse is sometimes
unstable. To overcome the unstableness, we recommend to use Tikhonov’s regularization
(Tikhonov & Arsenin, 1997):

A†
m ←− A∗

m(AmA
∗
m + εI)−1, (30)

where ε is a small constant, say ε = 10−4.
It has been shown that learning results obtained by projection learning are invariant

under the inner product in the sample value space (Yamashita & Ogawa, 1992). Hence,
without loss of generality, the Euclidean inner product is adopted in the sample value
space.

When the noise covariance matrix Qm is in the form of

Qm = σ2Im (31)

with σ2 > 0, the projection learning operator is given as (Ogawa, 1987)

Xm = A†
m. (32)

This implies that projection learning agrees with usual least mean squares learning aimed
at minimizing the training error

m∑
j=1

|fm(xj)− yj|2. (33)
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3.3 Incremental projection learning

Let us consider the case where a new training example (xm+1, ym+1) is added after a
learning result fm has been obtained from {(xj, yj)}mj=1. It follows from Eq.(9) that a

learning result fm+1 obtained from {(xj , yj)}m+1
j=1 in a batch manner can be expressed as

fm+1 = Xm+1y
(m+1). (34)

In order to devise an exact incremental learning method meeting the requirement (c)
shown in Section 3.1, let us calculate fm+1 in Eq.(34) by using fm and (xm+1, ym+1). Let
the noise characteristics of (xm+1, ym+1) be

qm+1 = En(nm+1n
(m)), (35)

σm+1 = En|nm+1|2, (36)

where nm+1 denotes the complex conjugate of nm+1. Note that qm+1 is an m-dimensional
vector while σm+1 is a scalar. Let N (Am) be the null space of Am and the following
notation is defined.

Vectors:

sm+1 = Amψm+1 + qm+1, (37)

tm+1 = U †
msm+1. (38)

Scalars:

αm+1 = ψm+1(xm+1) + σm+1 − 〈tm+1, sm+1〉, (39)

βm+1 = ym+1 − fm(xm+1)− 〈y(m) − Amfm, tm+1〉. (40)

Functions:

ψ̃m+1 = PN (Am)ψm+1 (= ψm+1 −A†
mAmψm+1), (41)

ξm+1 = ψm+1 − A∗
mtm+1, (42)

ξ̃m+1 = V †
mξm+1. (43)

From Eq.(5), ψm+1(xm+1) in Eq.(39) agrees with ‖ψm+1‖2.
As shown in Sugiyama and Ogawa (1999a, 1999c), the additional training examples

such that αm+1 = 0 can be rejected since they have no effect on learning results. Hence,
from here on, we focus on the training examples such that αm+1 	= 0. Then, the ex-
act incremental learning method called incremental projection learning (IPL) is given as
follows.

Proposition 3 (Incremental projection learning) (Sugiyama & Ogawa, 1999a,
1999b) When αm+1 defined by Eq.(39) is not zero, a posterior projection learning result
fm+1 can be obtained by using prior results fm, Am, U †

m, V †
m, and y(m) as follows.

(a) When ψm+1 	∈ R(A∗
m),

fm+1 = fm +
βm+1

ψ̃m+1 (xm+1)
ψ̃m+1. (44)
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(b) When ψm+1 ∈ R(A∗
m),

fm+1 = fm +
βm+1

αm+1 + 〈ξ̃m+1, ξm+1〉
ξ̃m+1. (45)

Note that fm+1 obtained by Proposition 3 exactly agrees with the learning result ob-
tained by batch projection learning (Eq.(34)) with {(xj, yj)}m+1

j=1 . ψ̃m+1 (xm+1) in Eq.(44)

is equivalent to ‖ψ̃m+1‖2 (see Eqs.(5) and (41)). The condition ψm+1 	∈ R(A∗
m) means that

ψm+1 is linearly independent of {ψj}mj=1, i.e., the approximation space R(A∗
m+1) becomes

wider than R(A∗
m). In contrast, ψm+1 ∈ R(A∗

m) means that ψm+1 is linearly dependent
of {ψj}mj=1, and hence the approximation space R(A∗

m+1) is equal to R(A∗
m).

Let us consider the case where the noise covariance matrix Qm+1 is positive definite3

and diagonal, i.e.,
Qm+1 = diag(σ1, σ2, · · · , σm+1), (46)

where σj > 0 for all j. Let β ′
m+1 and V ′

m be

β ′
m+1 = ym+1 − fm(xm+1), (47)

V ′
m = A∗

mQ
−1
m Am. (48)

In β ′
m+1, the third term in βm+1 vanishes. In V ′

m, U †
m in Vm is replaced with Q−1

m . Then,
IPL is reduced to the following simpler form.

Proposition 4 (Sugiyama & Ogawa, 1999a, 1999c) If Qm+1 is given by Eq.(46) with
σj > 0 for all j, then a posterior projection learning result fm+1 can be obtained by using
prior results fm and V ′†

m as follows.

(a) When ψm+1 	∈ R(A∗
m),

fm+1 = fm +
β ′
m+1

ψ̃m+1 (xm+1)
ψ̃m+1. (49)

(b) When ψm+1 ∈ R(A∗
m),

fm+1 = fm +
β ′
m+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

V ′†
mψm+1. (50)

Compared with Proposition 3, βm+1 is replaced with β ′
m+1, and αm+1, ξm+1, and ξ̃m+1

are not required in Proposition 4. Again, fm+1 obtained by Proposition 4 exactly agrees
with the learning result obtained by batch projection learning with {(xj, yj)}m+1

j=1 . If
σ1 = σ2 = · · · = σm+1 = σ2 (> 0), i.e.,

Qm+1 = σ2Im+1, (51)

3An operator T is said to be positive definite if 〈Tf, f〉 > 0 for any f 	= 0.
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then Eq.(50) yields

fm+1 = fm +
β ′
m+1

1 + 〈(A∗
mAm)†ψm+1, ψm+1〉

(A∗
mAm)†ψm+1. (52)

Eqs.(49) and (52) imply that the value of σ2 is not required for IPL when Qm+1 is in the
form of Eq.(51).

4 Basic sampling strategy

This section is devoted to giving a sampling strategy which is the basis for devising active
learning methods in the following sections.

Let Jb and Jv be the changes in the bias and variance of fm through the addition of
a training example (xm+1, ym+1), respectively, i.e.,

Jb = ‖PR(A∗
m+1)f − f‖2 − ‖PR(A∗

m)f − f‖2, (53)

Jv = En‖Xm+1n
(m+1)‖2 − En‖Xmn

(m)‖2. (54)

Then, the following proposition holds.

Proposition 5 (Sugiyama & Ogawa, 1999a, 1999c) For any additional training example
(xm+1, ym+1) such that αm+1 	= 0, the following relations hold.

(a) When ψm+1 	∈ R(A∗
m),

Jb ≤ 0 and Jv ≥ 0. (55)

(b) When ψm+1 ∈ R(A∗
m),

Jb = 0 and Jv ≤ 0. (56)

Proposition 5 states that an additional training example such that ψm+1 	∈ R(A∗
m)

reduces or maintains the bias while it increases or maintains the variance. In contrast, an
additional training example such that ψm+1 ∈ R(A∗

m) maintains the bias while it reduces
or maintains the variance.

Let us consider the case where the dimension of the Hilbert space H is finite, and the
total number M of training examples to sample is larger than or equal to the dimension
of H . In this case, it follows from Eq.(23) that the bias of learning results is zero for
any f in H if and only if N (Am) = {0}. For this reason, we comply with the two-stage
sampling scheme shown in Fig.3.

We start from m = 0. In Stage 1, training examples such that ψm+1 	∈ R(A∗
m) are

added to reduce the bias until it reaches zero. Let µ be the dimension of H . Stage 1 ends
if a training example such that ψm+1 	∈ R(A∗

m) is added µ times by which N (Aµ) = {0}
can be attained. Then, in Stage 2, training examples such that ψm+1 ∈ R(A∗

m) are added
to reduce the variance until the number of added training examples becomes M . Note



Incremental Active Learning for Optimal Generalization 13

Start

Find a sample point xm+1

minimizing Jv
under the constraint of ψm+1 	∈ R(A∗m)

m← m + 1

N (Am) = {0}

m < M

Find a sample point xm+1

minimizing Jv

m← 0
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no

yes

no

yes
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Figure 3: Two-stage sampling scheme.
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fm

Variance
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Figure 4: The interpretation of the assumptions in statistical active learning methods and
our method. Let f̂ be a function which is the best approximation to f in H . Statistical
active learning methods assume that f = f̂ and f̂ = Enfm. Namely, f belongs to H and
the mean of fm over the noise agrees with f̂ . In contrast, our method only assumes that
f ∈ H . The difference between f̂ and Enfm is explicitly evaluated in Stage 1.

that the additional training examples such that ψm+1 ∈ R(A∗
m) maintain the bias (see

Proposition 5 (b)). Hence, the bias remains zero throughout Stage 2.
As mentioned in Section 3.1, the criterion for active learning should be consistent with

the purpose of learning, i.e., the active learning criterion should be aimed at minimizing
the generalization error. Therefore, our active learning problems in both stages become
as follows.

Stage 1: Find a sample point minimizing Jv under the constraint of ψm+1 	∈ R(A∗
m).

Stage 2: Find a sample point minimizing Jv under the constraint of ψm+1 ∈ R(A∗
m).

Note that all additional training examples in Stage 2 satisfy ψm+1 ∈ R(A∗
m). This

means that, in Stage 2, the constraint ψm+1 ∈ R(A∗
m) does not have to be taken into

account. The condition ψm+1 	∈ R(A∗
m) in Stage 1 can be easily verified since ψm+1 	∈

R(A∗
m) if and only if

PN (Am)ψm+1 = ψ̃m+1 	= 0. (57)

In practice, we recommend to use the following criterion.

if ‖ψ̃m+1‖2 > ε then ψm+1 	∈ R(A∗
m),

where ε is a small constant, say ε = 10−4.
In the statistical active learning methods devised so far, the bias of the estimator is

assumed to be zero (MacKay, 1992; Cohn, 1994; Fukumizu, 1996). The interpretation of
this assumption is illustrated in Fig.4. Let f̂ be a function which is the best approximation
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to f in H . Then, the assumption of zero-bias is equivalent to f = f̂ and f̂ = Enfm.
Namely, f belongs to H and the mean of fm over the noise agrees with f̂ . In contrast,
the condition assumed in our framework is only f ∈ H . The difference between f̂ and
Enfm is explicitly evaluated in Stage 1.

Based on the two-stage sampling scheme shown in Fig.3, we propose two active learning
methods in the following sections.

5 Multi-point-search active learning

In this section, we propose an active learning method based on the multi-point-search.
In the derivation of the multi-point-search method, the following theorem plays a

central role.

Theorem 1 Jv defined by Eq.(54) can be expressed as follows.

(a) When ψm+1 	∈ R(A∗
m),

Jv =
αm+1 + 〈ξ̃m+1, ξm+1〉

ψ̃m+1 (xm+1)
− 1. (58)

(b) When ψm+1 ∈ R(A∗
m),

Jv = − ‖ξ̃m+1‖2
αm+1 + 〈ξ̃m+1, ξm+1〉

. (59)

Proofs of all theorems are given in Appendix A. Theorem 1 implies that Jv can be
calculated without ym+1. Namely, we can evaluate the quality of additional training
examples only by using their sampling locations. It should be noted that Eq.(59) is
conceptually similar to the criteria shown in Fedorov (1972), MacKay (1992), and Cohn
(1994). The difference is that the noise is assumed to be i.i.d. in their methods while
correlated noise can be treated in our method if the noise covariance matrix is available.
When the noise is uncorrelated, Theorem 1 can be reduced to the following simpler form.

Theorem 2 If Qm+1 is given by Eq.(46) with σj > 0 for all j, then Jv can be expressed
as follows.

(a) When ψm+1 	∈ R(A∗
m),

Jv =
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1 (xm+1)

. (60)

(b) When ψm+1 ∈ R(A∗
m),

Jv = − ‖V ′†
mψm+1‖2

σm+1 + 〈V ′†
mψm+1, ψm+1〉

. (61)
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Compared with Theorem 1, αm+1, ξm+1, and ξ̃m+1 are not required in Theorem 2. If
σ1 = σ2 = · · · = σm+1 = σ2 (> 0), i.e.,

Qm+1 = σ2Im+1, (62)

then Theorem 2 becomes as follows.

Corollary 1 If Qm+1 is given by Eq.(62), then Jv can be expressed as follows.

(a) When ψm+1 	∈ R(A∗
m),

Jv = σ2 1 + 〈(A∗
mAm)†ψm+1, ψm+1〉
ψ̃m+1 (xm+1)

. (63)

(b) When ψm+1 ∈ R(A∗
m),

Jv = −σ2 ‖(A∗
mAm)†ψm+1‖2

1 + 〈(A∗
mAm)†ψm+1, ψm+1〉

. (64)

Corollary 1 implies that when Qm+1 is given by Eq.(62) with σ2 > 0, the value of σ2

is not required for the minimization of Jv. Based on the above theorems and corollary,
the algorithm of the multi-point search active learning method is described in Fig.5.

Strictly, the algorithm shown in Fig.5 does not meet the requirement (b) mentioned
in Section 3.1. However, it will be experimentally shown through computer simulations
in Section 7 that the multi-point-search method specifies a better sampling location.

If the dimension of the input x is very large, many candidates may be required for
finding a better sampling location. One of the measures is to employ the gradient method
for finding a local maximum, i.e., with some initial value, xm+1 is updated until a certain
convergence criterion holds as

xm+1 ←− xm+1 − ε∆Jv(xm+1), (65)

where ε is a small positive constant and ∆Jv(xm+1) is the gradient of Jv at xm+1.

6 Optimal sampling in the trigonometric polynomial

space

In the previous section, we gave an active learning method for general finite dimensional
Hilbert spaces. In this section, we focus on the trigonometric polynomial space and devise
a more effective active learning method. This method strictly meets the requirement (b)
described in Section 3.1.

First, our model, the trigonometric polynomial space is defined as follows.
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m← 0;
while N (Am) 	= {0} {

Generate c locations {x(j)
m+1}cj=1 such that ψm+1 	∈ R(A∗

m) as candidates;

j0 ← argmin
j

Jv(x
(j)
m+1);

Sample ym+1 at x
(j0)
m+1;

Carry out IPL with (x
(j0)
m+1, ym+1);

m← m+ 1;
}
while m < M {

Generate c locations {x(j)
m+1}cj=1 as candidates;

j0 ← argmin
j

Jv(x
(j)
m+1);

Sample ym+1 at x
(j0)
m+1;

Carry out IPL with (x
(j0)
m+1, ym+1);

m← m+ 1;
}

Figure 5: Algorithm of the multi-point-search active learning method.

Definition 2 (Trigonometric polynomial space) Let x = (ξ(1), ξ(2), · · · , ξ(L))�. For
1 ≤ l ≤ L, let Nl be a non-negative integer and Dl = [−π, π]. Then, a function space H
is called a trigonometric polynomial space of order (N1, N2, · · · , NL) if H is spanned by{

L∏
l=1

exp(inlξ
(l))

}N1,N2,···,NL

n1=−N1,n2=−N2,···,nL=−NL

(66)

defined on D1 ×D2 × · · · × DL, and the inner product in H is defined as

〈f, g〉 =
1

(2π)L

∫ π

−π

∫ π

−π
· · ·

∫ π

−π
f(x)g(x)dξ(1)dξ(2) · · · dξ(L). (67)

Note that the function space spanned by {exp(inξ)}Nn=−N is equal to the function space
spanned by {1, cosnξ, sinnξ}Nn=1. The dimension µ of a trigonometric polynomial space
of order (N1, N2, · · · , NL) is

µ =
L∏
l=1

(2Nl + 1). (68)

The reproducing kernel of a trigonometric polynomial space of order (N1, N2, · · · , NL) is
expressed as

K(x, x′) =
L∏
l=1

Kl(ξ
(l), ξ(l)′), (69)
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Figure 6: Profile of the reproducing kernel of a trigonometric polynomial space of order
(5,3) with x′ = (0, 0)�.

where

Kl(ξ
(l), ξ(l)′) =




sin
(2Nl + 1)(ξ(l) − ξ(l)′)

2

/
sin

ξ(l) − ξ(l)′

2
if ξ(l) 	= ξ(l)′ ,

2Nl + 1 if ξ(l) = ξ(l)′ .

(70)

The profile of Eq.(69) is illustrated in Fig.6. Then, we have the following theorem.

Theorem 3 Suppose that the noise covariance matrix QM is

QM = σ2IM , (71)

with σ2 > 0. For 0 ≤ k ≤ M−1
µ
� and 1 ≤ l ≤ L, let c

(l)
k be an arbitrary constant such

that −π ≤ c
(l)
k ≤ −π + 2π

2Nl+1
, where c� denotes the maximum integer less than or equal

to c. If we put

xm+1 = (ξ
(1)
m+1, ξ

(2)
m+1, · · · , ξ(L)

m+1)
� : ξ

(l)
m+1 = c(l)p +

2π

2Nl + 1
ql (72)

where

p =

⌊
m

µ

⌋
, (73)

ql =



m mod (2N1 + 1) if l = 1,⌊

m∏l−1

r=1
(2Nr+1)

⌋
mod (2Nl + 1) if 2 ≤ l ≤ L,

(74)
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Figure 7: Optimal sample points in a trigonometric polynomial space of order (3, 1). The
number M of training examples is 7× 3× 3 = 63.

then xm+1 minimizes Jv under the constraint that {xj}mj=1 are successively determined by
Eq.(72).

Theorem 3 states that for each p, µ locations are fixed at regular intervals. Fig.7
illustrates a set of 63 sample points determined by Theorem 3 when L = 2, N1 = 3,
and N2 = 1. For each p, the base point (c(1)p , c(2)p )� is fixed in the dark region, and 21
sample points are fixed at regular intervals. From Eq.(69), a set { 1√

µ
ψpµ+q}µq=1 of sampling

functions forms an orthonormal basis in H for each p. Although this sampling scheme is
derived as the greedy optimal scheme, this scheme is in fact globally optimal at the same
time when (M mod µ) = 0 (see Sugiyama & Ogawa, 2000).

7 Computer simulations

In this section, the effectiveness of the proposed active learning methods is demonstrated
through computer simulations.
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7.1 Illustrative simulation

Let us consider learning in a trigonometric polynomial space of order 3. Let the target
function f(x) be

f(x) =
√

2 sin x+
√

2 cosx+
1

2
√

2
sin 2x+

1√
2

cos 2x−
√

2 sin 3x+
√

2 cos 3x. (75)

Let the noise covariance matrix be
QM = IM . (76)

We shall compare the performance of following sampling schemes.

(a) Optimal sampling: Training examples are sampled following Theorem 3 with c
(1)
k =

−π + π
2×3+1

for all k.

(b) Multi-point-search: Training examples are sampled following the multi-point-
search method shown in Fig.5. Let the number c of candidates be 3 and they
are randomly generated in the domain [−π, π].

(c) Experiment design: Eq.(2) in Cohn (1994) is adopted as the active learning cri-
terion. The value of this criterion is evaluated by the Monte Carlo sampling with
30 reference points. The next sampling location is determined by the multi-point-
search with 3 candidates. Namely, 3 locations are randomly created in the domain
and the one minimizing the criterion is selected.

(d) Passive learning: Training examples are randomly supplied from the domain.

Learning results obtained by the above sampling schemes with 21 training examples
are shown in Fig.8. The solid and dashed lines show the target function f(x) and learn-
ing results, respectively. ◦ denotes a training example. Fig.8 A–D show the learning
results obtained by the sampling schemes (a)–(d), where the generalization errors mea-
sured by Eq.(10) are 0.333, 0.342, 0.358, and 0.807, respectively. These results show that
the sampling schemes (a), (b), and (c) give 58.7, 57.6, and 55.7 percent reductions in the
generalization error, respectively, compared with the sampling scheme (d). The general-
ization capability acquired by the sampling schemes (b) and (c) are close to that obtained
by the sampling scheme (a). This means that the sampling schemes (b) and (c) works
quite well with a small number of candidates since the sampling schemes (a) gives the
optimal generalization capability (see Section 6).

The changes in the variance through the addition of training examples are shown in
Fig.9. The horizontal axis denotes the number of training examples while the vertical axis
denotes the variance measured by Eq.(17). The solid line shows the sampling scheme (a).
The dashed, dash-dotted, and dotted lines denote the means of 100 trials by the sampling
schemes (b), (c), and (d), respectively. In the sampling schemes (a) and (b), it always
hold that N (A7) = {0} because the dimension of H is 7 (see Section 4). In the sampling
schemes (c) and (d), N (A7) = {0} was attained in all 100 trials in this simulation. Hence,
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Figure 8: Results of learning simulation in a trigonometric polynomial space of order 3
with the noise covariance matrix Q21 = I21. The solid line shows the target function f(x).
Dashed lines in A–D show the learning results obtained by the optimal sampling method
(Theorem 3), the multi-point-search method (Fig.5), the experimental design method,
and passive learning, respectively. ◦ denotes a training example. The generalization error
JG is measured by Eq.(10).
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Figure 9: Relation between the number of training examples and the noise variance in
a trigonometric polynomial space of order 3 with the noise covariance matrix QM =
IM . The horizontal axis denotes the number of training examples while the vertical axis
denotes the noise variance measured by Eq.(17). The vertical axis can be regarded as the
generalization error when the number of training examples is larger than or equal to 7.

it follows from Eq.(23) that the vertical axis in Fig.9 can be regarded as the generalization
error when m ≥ 7.

This graph shows that, when m ≤ 7, the variance of all sampling schemes increases,
this phenomenon is in good agreement with Proposition 5. In this case, the sampling
schemes (a) and (b) give much lower variance than the sampling schemes (c) and (d). It
should be noted that the sampling scheme (c) gives higher variance than the sampling
scheme (d), passive learning. This may be caused by the fact that the bias is not zero,
so the criterion for the optimal experiment design is no longer valid. When m > 7,
the variances of all sampling schemes decrease as shown in Proposition 5. The sampling
schemes (a), (b), and (c) suppress the variance more efficiently than the sampling scheme
(d).

This simulation shows that the sampling schemes (a) and (b) outperform the sampling
scheme (c) especially when the number of training examples is small, thanks to the two-
stage sampling scheme. Also, the multi-point-search method with a small number of
candidates is shown to work well.

7.2 Learning of the sensorimotor map of a two-joint robot arm

In this subsection, we apply the multi-point-search active learning method proposed in
Section 5 to a real world problem. Let us consider learning of sensorimotor maps of a
two-joint robot arm shown in Fig.10. A sensorimotor map of the k-th joint (k = 1, 2) is
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joint 1

joint 2

θ1

θ2

τ1
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Figure 10: Two-joint robot arm.

a mapping from joint angle θk, angular velocity θ̇k, and angular acceleration θ̈k to torque
τk which should be applied to the k-th joint:

τk = f (k)(θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2) for k = 1, 2, (77)

where −π ≤ θ1, θ2 ≤ π, −a1 ≤ θ̇1 ≤ a1, −a2 ≤ θ̇2 ≤ a2, −b1 ≤ θ̈1 ≤ b1, and −b2 ≤ θ̈2 ≤ b2.
Function spaces Hk to which f (k) belong are given as follows (Vijayakumar, 1998).

H1 = L(θ̈1, θ̈2, θ̈1 cos θ2, θ̈2 cos θ2,

θ̇2
2
sin θ2, θ̇1θ̇2 sin θ2, sin θ1, sin θ1 cos θ2, sin θ2 cos θ1), (78)

H2 = L(θ̈1, θ̈2, θ̈1 cos θ2, θ̇1
2
sin θ2, sin θ1, sin θ1 cos θ2, sin θ2 cos θ1), (79)

where H = L(ϕ1, ϕ2, · · · , ϕk) means that H is spanned by ϕ1, ϕ2, · · · , ϕk. The inner
product in Hk is defined as

〈f, g〉 =
1

64π2a1a2b1b2

∫ b2

−b2

∫ b1

−b1

∫ a2

−a2

∫ a1

−a1

∫ π

−π

∫ π

−π
f(x)g(x) dθ1dθ2dθ̇1dθ̇2dθ̈1dθ̈2. (80)

We shall perform a learning simulation of the sensorimotor map f (1). From Eqs.(78)
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Figure 11: Results of learning of the sensorimotor map f (1). The horizontal axis de-
notes the number of training examples while the vertical axis denotes the noise variance
measured by Eq.(17). The solid and dotted lines show the means of 100 trials by the
multi-point-search method and passive learning, respectively. The vertical axis can be
regarded as the generalization error when the number of training examples is larger than
or equal to 10.

and (80), an orthonormal basis {ϕ(1)
j }9j=1 in H1 is given as follows.

ϕ
(1)
1 =

√
3
b1
θ̈1, ϕ

(1)
2 =

√
3
b2
θ̈2, ϕ

(1)
3 =

√
6
b1
θ̈1 cos θ2,

ϕ
(1)
4 =

√
6
b2
θ̈2 cos θ2, ϕ

(1)
5 =

√
10
a22
θ̇2

2
sin θ2, ϕ

(1)
6 =

√
18

a1a2
θ̇1θ̇2 sin θ2,

ϕ
(1)
7 =

√
2 sin θ1, ϕ

(1)
8 = 2 sin θ1 cos θ2, ϕ

(1)
9 = 2 sin θ2 cos θ1.

Hence, the reproducing kernel of H1 is given as

K1(x, x
′) =

9∑
j=1

ϕ
(1)
j (x)ϕ

(1)
j (x′). (81)

Suppose that training examples are degraded by additive noise. Let us consider the
following two sampling schemes.

(a) Multi-point-search: Training examples are sampled following the multi-point-
search method shown in Fig.5. Let the number c of candidates be 3 and they
are randomly generated in the domain.

(b) Passive learning: Training examples are randomly supplied from the domain.
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Fig.11 shows simulation results. The horizontal axis denotes the number of training
examples while the vertical axis denotes the variance measured by Eq.(17). The solid
and dashed lines show the mean variances of 100 trials by the sampling schemes (a) and
(b), respectively. In the sampling scheme (a), it holds that N (A9) = {0} because the
dimension of H is equal to 9. In the sampling scheme (b), N (A10) = {0} was attained
in all 100 trials in this simulation. Hence, it follows from Eq.(23) that the vertical axis
in Fig.11 can be regarded as the generalization error when m ≥ 10. This graph shows
that the multi-point-search method with three candidates provides better generalization
capability than passive learning. However, the performance of the multi-point-search
method in this simulation is not so excellent as that in the previous one. The reason may
be that the number c of candidates is small in contrast to the size of the domain.

8 Conclusion

In this paper, we gave a basic sampling strategy called the two-stage sampling scheme
for reducing both the bias and variance, and based on this scheme, we proposed two
active learning methods. One is the multi-point-search method applicable to arbitrary
models, and the other is the optimal sampling method in the trigonometric polynomial
space. The effectiveness of the proposed methods was demonstrated through computer
simulations. As well as usual active learning methods devised so far, our methods assume
that a model to which the learning target belongs is available. If the model is unknown,
it should be estimated by model selection methods. To evaluate the robustness of the
presented methods when they are combined with model selection is important future
work.

Appendix

A Proof of Theorem 1

Let tr(·) stand for the trace of an operator. Then, for f, g ∈ H , it hold that

tr (f ⊗ g) = 〈f, g〉. (82)

It follows from Eqs.(20), (21), (19), (18), and (22) that

En‖Xmn
(m)‖2 = Entr

(
Xm

(
n(m) ⊗ n(m)

)
X∗
m

)
= tr (XmQmX

∗
m) (83)

= tr (XmUmX
∗
m)− tr (XmAmA

∗
mX

∗
m)

= tr
(
V †
mA

∗
mU

†
mUmU

†
mAmV

†
m

)
− tr

(
PR(A∗

m)P
∗
R(A∗

m)

)
= tr

(
V †
m

)
− tr

(
PR(A∗

m)

)
. (84)
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Eqs.(54) and (84) yield

Jv = tr
(
V †
m+1

)
− tr

(
PR(A∗

m+1)

)
− tr

(
V †
m

)
+ tr

(
PR(A∗

m)

)
. (85)

First, we shall prove the case where ψm+1 	∈ R(A∗
m). It follows from Eq.(7) that

tr
(
PR(A∗

m+1)

)
= tr

(
PR(A∗

m)

)
+ 1. (86)

From Sugiyama and Ogawa (1999b), V †
m+1 is expressed by using V †

m as

V †
m+1 = V †

m +
αm+1 + 〈ξ̃m+1, ξm+1〉

ψ̃m+1 (xm+1)
2

ψ̃m+1 ⊗ ψ̃m+1 − ξ̃m+1 ⊗ ψ̃m+1 + ψ̃m+1 ⊗ ξ̃m+1

ψ̃m+1 (xm+1)
. (87)

Since it holds from Ogawa (1987) that

R(V †
m) = R(A∗

m), (88)

Eqs.(41) and (43) yield

〈ψ̃m+1, ξ̃m+1〉 = 〈PN (Am)ψm+1, V
†
mξm+1〉 = 0. (89)

It follows from Eqs.(87), (89), (41), and (5) that

tr
(
V †
m+1

)
= tr

(
V †
m

)
+
αm+1 + 〈ξ̃m+1, ξm+1〉

ψ̃m+1 (xm+1)
2 ‖ψ̃m+1‖2

= tr
(
V †
m

)
+
αm+1 + 〈ξ̃m+1, ξm+1〉

ψ̃m+1 (xm+1)
. (90)

Substituting Eqs.(86) and (90) into Eq.(85), we have Eq.(58).
We shall prove the case where ψm+1 ∈ R(A∗

m). It follows from Eq.(7) that

R(A∗
m+1) = R(A∗

m). (91)

From Sugiyama and Ogawa (1999b), it holds that

V †
m+1 = V †

m −
ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (92)

Substituting Eqs.(91) and (92) into Eq.(85), we have Eq.(59).
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B Proof of Theorem 2

When Qm+1 is given by Eq.(46) with σj > 0 for all j, it holds from Ogawa (1987) that
the projection learning operator is expressed as

Xm = V ′†
mA

∗
mQ

−1
m . (93)

Eqs.(83), (93), and (48) yield

En‖Xmn
(m)‖2 = tr (XmQmX

∗
m)

= tr
(
V ′†
mA

∗
mQ

−1
m QmQ

−1
m AmV

′†
m

)
= tr

(
V ′†
m

)
. (94)

It follows from Eqs.(54) and (94) that

Jv = tr
(
V ′†
m+1

)
− tr

(
V ′†
m

)
. (95)

First, we shall prove the case where ψm+1 	∈ R(A∗
m). It follows from Sugiyama and

Ogawa (1999c) that

V ′†
m+1 = V ′†

m +
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1 (xm+1)

2
ψ̃m+1 ⊗ ψ̃m+1

− V ′†
mψm+1 ⊗ ψ̃m+1 + ψ̃m+1 ⊗ V ′†

mψm+1

ψ̃m+1 (xm+1)
. (96)

Since R(V ′†
m ) = R(A∗

m), it holds from Eq.(41) that

〈V ′†
mψm+1, ψ̃m+1〉 = 〈V ′†

mψm+1, PN (Am)ψm+1〉 = 0. (97)

It follows from Eqs.(96), (97), (41), and (5) that

tr
(
V ′†
m+1

)
= tr

(
V ′†
m

)
+
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1 (xm+1)

2 ‖ψ̃m+1‖2

= tr
(
V ′†
m

)
+
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1 (xm+1)

. (98)

Substituting Eq.(98) into Eq.(95), we have Eq.(60).
We shall prove the case where ψm+1 ∈ R(A∗

m). It follows from Sugiyama and Ogawa
(1999c) that

V ′†
m+1 = V ′†

m −
V ′†
mψm+1 ⊗ V ′†

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

. (99)

Eqs.(95) and (99) yield Eq.(61).
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C Proof of Theorem 3

If m = 0, then it follows from Eq.(63) that

Jv =
σ2

‖ψ̃m+1‖2
=

σ2

‖ψm+1‖2 =
σ2

µ
. (100)

Hence, Jv is minimized by any x1.
Now we focus on the case where m ≥ 1. Suppose that sample points {xj}mj=1 are

successively determined by Eq.(72). For a fixed integer s such that 0 ≤ s ≤ m−1
µ
�, let us

consider the sample points xj and xj′ such that

sµ+ 1 ≤ j, j′ ≤
{

(s+ 1)µ if (s+ 1)µ ≤ m,
m if sµ+ 1 ≤ m < (s+ 1)µ.

(101)

Let t = (j mod µ) and t′ = (j′ mod µ). Then, it follows from Eqs.(69) and (70) that

〈ψj′, ψj〉 = ψj′(xj) = K(xj , xj′) = µδtt′ , (102)

where δtt′ denotes Kronecker’s delta.
First, we shall prove the case where 1 ≤ m ≤ µ− 1. It follows from Eqs.(7) and (102)

that

A∗
mAm =

m∑
j=1

(
ψj ⊗ ψj

)
= µ

m∑
j=1

(
ψj√
µ
⊗ ψj√

µ

)
= µPR(A∗

m), (103)

which yields

(A∗
mAm)†ψm+1 =

1

µ
PR(A∗

m)ψm+1 =
1

µ
(ψm+1 − ψ̃m+1). (104)

By using the fact that ‖ψ̃m+1‖2 ≤ ‖ψm+1‖2 = µ, it follows from Eqs.(63), (104), and (102)
that

Jv = σ2
1 + 1

µ
〈ψm+1 − ψ̃m+1, ψm+1〉
‖ψ̃m+1‖2

= σ2
1 + 1

µ
(‖ψm+1‖2 − ‖ψ̃m+1‖2)
‖ψ̃m+1‖2

≥ σ2
1 + 1

µ
(‖ψm+1‖2 − ‖ψm+1‖2)
‖ψm+1‖2

=
σ2

µ
, (105)

where equality holds if and only if

ψm+1 = ψ̃m+1 (106)

because of Eq.(41). Since Eq.(102) implies Eq.(106), Jv is minimized.
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We shall prove the case where µ ≤ m ≤M − 1. Let p = m
µ
�. It follows from Eqs.(7)

and (102) that

A∗
mAm = µ


 pµ∑
j=1

(
ψj√
µ
⊗ ψj√

µ

)
+

m∑
j=pµ+1

(
ψj√
µ
⊗ ψj√

µ

)
= pµ(IH +

1

p
P ), (107)

where IH and P denote the identity operator on H and the orthogonal projection operator
onto L

(
{ψj}mj=pµ+1

)
, respectively. Then, it holds that

(A∗
mAm)−1 =

1

pµ
(IH − 1

p+ 1
P ). (108)

It follows from Eqs.(64), (108), and (102) that

Jv = −σ2
‖ 1
pµ
ψm+1 − 1

p(p+1)µ
Pψm+1‖2

1 + 〈 1
pµ
ψm+1 − 1

p(p+1)µ
Pψm+1, ψm+1〉

= −
σ2
(
1− (2p+1)‖Pψm+1‖2

(p+1)2µ

)
p(p+ 1)µ− p

p+1
‖Pψm+1‖2 . (109)

Let a function g(t) be

g(t) = −
σ2
(
1− (2p+1)t

(p+1)2µ

)
p(p+ 1)µ− p

p+1
t
, (110)

where ‖Pψm+1‖2 in Eq.(109) is replaced with t. It follows from Eq.(102) that

0 ≤ ‖Pψm+1‖2 ≤ ‖ψm+1‖2 = µ. (111)

Hence, we focus on [0, µ] as the domain of g(t). Since the derivative of g with respect to
t is

dg

dt
=

2σ2p2

p+1(
p(p+ 1)µ− p

p+1
t
)2 > 0 (112)

and g(t) is continuous, it is minimized if and only if t = 0. This implies that Jv is
minimized if and only if ‖Pψm+1‖2 = 0, which is attained by Eq.(102).
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