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Abstract

The problem of designing input signals for optimal generalization in supervised learning is called active
learning. In many active learning methods devised so far, the bias of the learning results is assumed to be
zero. In this paper, we remove this assumption and propose a new active learning method with the bias
reduction. The effectiveness of the proposed method is demonstrated through computer simulations.

1 Introduction

Supervised learning is obtaining an underlying rule from sampled training examples and can be formulated
as a function approximation problem. If sample points are actively designed, then learning can be performed
more efficiently. In this paper, we will discuss the problem of designing sample points, referred to as active
learning, for optimal generalization.

So far, active learning has been studied from two different standpoints depending on the optimality: global
optimal where a set of all sample points is optimal (e.g. Fedorov [2], Sugiyama and Ogawa [11]) and greedy
optimal where the next sample point to add is optimal in each step (e.g. MacKay [4], Cohn [1], Fukumizu
[3]). Generally, the global optimal methods give better generalization capability than the greedy optimal
methods. However, the global optimal results have been obtained only for restricted cases. In contrast, the
greedy optimal methods have been derived under general conditions. Even so, the greedy optimal methods
devised so far are still restricted since the bias of the learning result is assumed to be zero, which sometimes
prevents us from applying active learning to real world problems.

In this paper, we focus on the greedy optimal case and propose a new incremental active learning method
with the bias reduction. The proposed method does not require the assumption of zero-bias. Our computer
simulations show that the proposed method works better than usual methods.

2 Formulation of supervised learning problem

In this section, the supervised learning problem is formulated from the functional analytic point of view (see
Ogawa [6]).

Let us consider the problem of obtaining the optimal approximation to a target function f(x) of L
variables from a set of m training examples. The training examples are made up of input signals xj in D,
where D is a subset of the L-dimensional Euclidean space RL, and corresponding output signals yj in the
unitary space C:

{(xj, yj) | yj = f(xj) + nj}mj=1, (1)

where yj is degraded by zero-mean additive noise nj . Let n(m) and y(m) be m-dimensional vectors whose
j-th elements are nj and yj , respectively. In this paper, the target function f(x) is assumed to belong to a
reproducing kernel Hilbert space H . If H is unknown, then it can be estimated by model selection methods
(e.g. Sugiyama and Ogawa [10]). Let K(x, x′) be the reproducing kernel of H . If a function ψj(x) is defined
as ψj(x) = K(x, xj), then the value of f at a sample point xj is expressed as f(xj) = 〈f, ψj〉. Let Am be an
operator defined as Am =

∑m
j=1

(
e
(m)
j ⊗ ψj

)
, where e(m)

j is the j-th vector of the so-called standard basis
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in the m-dimensional unitary space Cm and (· ⊗ ·) stands for the Neumann-Schatten product1. Then, the
relationship between f and y(m) can be expressed as

y(m) = Amf + n(m). (2)

Let us denote a mapping from y(m) to a learning result fm by Xm:

fm = Xmy
(m), (3)

where Xm is called a learning operator. Consequently, the supervised learning problem can be reformulated
as an inverse problem of obtaining Xm providing the best approximation fm to f under a certain learning
criterion.

3 Learning process

In this section, a general process for supervised learning is described.
Supervised learning is generally processed as follows.

(i) The learning criterion is determined.

(ii) What data to gather is decided and sample values are gathered at the decided locations. (Incremental
active learning)

(iii) By using the gathered training examples, a learning procedure is carried out. (Incremental learning)

(iv) The learning result is evaluated. If the learning result is satisfactory, then the learning process is
completed. Otherwise, training examples are added to improve the learning result until it becomes
satisfactory.

In this paper, training examples are sampled and added one by one along with the process. The purpose of
this paper is to give an incremental active learning method corresponding to (ii).

As the learning criterion corresponding to (i), we adopt projection learning (Ogawa [5]). Let En, A∗
m,

R(A∗
m), and PR(A∗

m) be the ensemble average over noise, the adjoint operator of Am, the range of A∗
m, and

the orthogonal projection operator onto R(A∗
m), respectively. Then, projection learning is defined as follows.

Definition 1 (Projection learning) (Ogawa [5]) An operator Xm is called the projection learning opera-
tor if Xm minimizes the functional JP [Xm] = En‖Xmn

(m)‖2 under the constraint XmAm = PR(A∗
m).

Let A†
m be the Moore-Penrose generalized inverse of Am. Then, the following proposition holds.

Proposition 1 (Ogawa [5]) A general form of the projection learning operator is expressed as

Xm = V †
mA

∗
mU

†
m + Ym(Im − UmU

†
m), (4)

where Ym is an arbitrary operator from Cm to H and

Qm = En

(
n(m) ⊗ n(m)

)
, Um = AmA

∗
m +Qm, and Vm = A∗

mU
†
mAm. (5)

Note that the projection learning operator given by eq.(4) is linear. Since the projection learning result
fm obtained by eqs.(3) and (4) belongs to R(A∗

m), R(A∗
m) is called the approximation space.

As an incremental learning method corresponding to (iii), we adopt a method of incremental projection
learning (IPL) (Sugiyama and Ogawa [7, 8]). In the rest of this section, IPL is reviewed.

Let us consider the case where a new training example (xm+1, ym+1) is added after a learning result fm

has been obtained from {(xj, yj)}mj=1. Let the noise characteristics of (xm+1, ym+1) be

qm+1 = En(nm+1n
(m)), and σm+1 = En|nm+1|2, (6)

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten product (f ⊗ g) is an
operator from H1 to H2 defined by using any h ∈ H1 as (f ⊗ g)h = 〈h, g〉f .



where nm+1 denotes the complex conjugate of nm+1. Note that qm+1 is an m-dimensional vector while σm+1

is a scalar. Let N (Am) and PN(Am) be the null space of Am and the orthogonal projection operator onto
N (Am), respectively, and the following notation is defined.

Vectors: sm+1 = Amψm+1 + qm+1, (7)
tm+1 = U †

msm+1. (8)
Scalars: αm+1 = ψm+1(xm+1) + σm+1 − 〈tm+1, sm+1〉, (9)

βm+1 = ym+1 − fm(xm+1) − 〈y(m) −Amfm, tm+1〉. (10)
Functions: ψ̃m+1 = PN(Am)ψm+1, (11)

ξm+1 = ψm+1 − A∗
mtm+1, (12)

ξ̃m+1 = V †
mξm+1. (13)

As shown in Sugiyama and Ogawa [7, 9], the additional training examples such that ξm+1 = 0 can be
rejected since they have no effect on learning results. Hence, from here on, we focus on the training examples
such that ξm+1 �= 0. Then, IPL is given as follows.

Proposition 2 (Incremental projection learning) (Sugiyama and Ogawa [7, 8]) When ξm+1 defined
by eq.(12) is not zero, a posterior projection learning result fm+1 can be obtained by using prior results fm,
Am, U †

m, V †
m, and y(m) as follows.

fm+1 = fm +

{
βm+1ψ̃m+1/ψ̃m+1 (xm+1) if ψm+1 �∈ R(A∗

m),

βm+1ξ̃m+1/(αm+1 + 〈ξ̃m+1, ξm+1〉) if ψm+1 ∈ R(A∗
m).

(14)

Note that fm+1 obtained by Proposition 2 exactly agrees with the learning result obtained by batch
projection learning with {(xj, yj)}m+1

j=1 . Namely, IPL provides the optimal learning result in the sense of
projection learning. The condition ψm+1 �∈ R(A∗

m) means that ψm+1 is linearly independent of {ψj}mj=1, i.e.,
the approximation space R(A∗

m+1) becomes wider than R(A∗
m). In contrast, ψm+1 ∈ R(A∗

m) means that
ψm+1 is linearly dependent of {ψj}mj=1, and hence the approximation space R(A∗

m+1) is equal to R(A∗
m).

4 Active learning based on the two-stage sampling scheme

In this section, a new method of incremental active learning is given based on the basic sampling strategy
called the two-stage sampling scheme.

Let us measure the generalization error of the learning result fm by

Jg = En‖fm − f‖2. (15)

It is well-known that eq.(15) can be decomposed into the bias and variance:

Jg = ‖PR(A∗
m)f − f‖2 + En‖Xmn

(m)‖2. (16)

Let ∆Jb and ∆Jv be the changes in the bias and variance of fm through the addition of a training example
(xm+1, ym+1), respectively, i.e.,

∆Jb = ‖PR(A∗
m+1)

f − f‖2 − ‖PR(A∗
m)f − f‖2, (17)

∆Jv = En‖Xm+1n
(m+1)‖2 −En‖Xmn

(m)‖2. (18)

Then, the following proposition holds.

Proposition 3 (Sugiyama and Ogawa, [7, 9]) For any additional training example (xm+1, ym+1) such that
ξm+1 �= 0, the following relations hold.

(a) When ψm+1 �∈ R(A∗
m),

∆Jb ≤ 0 and ∆Jv ≥ 0. (19)



(b) When ψm+1 ∈ R(A∗
m),

∆Jb = 0 and ∆Jv < 0. (20)

Proposition 3 states that an additional training example such that ψm+1 �∈ R(A∗
m) reduces or maintains

the bias while it increases or maintains the variance. In contrast, an additional training example such that
ψm+1 ∈ R(A∗

m) maintains the bias while it reduces the variance.
Let us consider the case where the dimension of the Hilbert space H is finite, and the total number M

of training examples to sample is larger than or equal to the dimension of H . In this case, it follows from
eq.(16) that the bias of learning results is zero for any f in H if and only if N (Am) = {0}. Based on this
fact, we comply with the following two-stage sampling scheme.

We start from m = 0. In Stage 1, training examples such that ψm+1 �∈ R(A∗
m) are added to reduce

the bias until it reaches zero. Let µ be the dimension of H . Stage 1 ends if a training example such that
ψm+1 �∈ R(A∗

m) is added µ times by which N (Aµ) = {0} can be attained. Then, in Stage 2, training
examples such that ψm+1 ∈ R(A∗

m) are added to reduce the variance until the number of added training
examples becomes M . Note that the additional training examples such that ψm+1 ∈ R(A∗

m) maintain the
bias (see Proposition 3 (b)), i.e., the bias remains zero throughout Stage 2.

Since the purpose of learning is to minimize the generalization error defined by eq.(15), our active learning
problems in both stages become as follows.

Stage 1: Find a sample point minimizing ∆Jv under the constraint of ψm+1 �∈ R(A∗
m).

Stage 2: Find a sample point minimizing ∆Jv under the constraint of ψm+1 ∈ R(A∗
m).

Note that all additional training examples in Stage 2 satisfy ψm+1 ∈ R(A∗
m) since N (Am) = {0} has

been attained at the end of Stage 1. This means that, in Stage 2, the constraint ψm+1 ∈ R(A∗
m) does not

have to be taken into account.
In the statistical active learning methods devised so far, the bias of the estimator is assumed to be zero

(MacKay [4], Cohn [1], Fukumizu [3]). The assumption of zero-bias is equivalent to that f belongs to H and
Enfm agrees with f . In contrast, the condition assumed in our framework is only f ∈ H . The difference
between f and Enfm is explicitly evaluated in Stage 1 in spite of the fact that the bias is unknown.

Based on the two-stage sampling scheme described above, we shall give an incremental active learning
method. The following theorem plays a central role in the derivation.

Theorem 1 ∆Jv defined by eq.(18) can be expressed as follows.

∆Jv =

{
(αm+1 + 〈ξ̃m+1, ξm+1〉)/ψ̃m+1 (xm+1) if ψm+1 �∈ R(A∗

m),

−‖ξ̃m+1‖2/(αm+1 + 〈ξ̃m+1, ξm+1〉) if ψm+1 ∈ R(A∗
m).

(21)

Theorem 1 implies that ∆Jv can be calculated without ym+1. Namely, the quality of additional training
examples can be evaluated only by using their sampling locations. It should also be noted that when the
noise covariance matrix Qm+1 is in the form Qm+1 = σ2Im+1 with σ2 > 0, the minimization of ∆Jv can be
performed without the value σ2 of the noise variance. In this case, the lower half of eq.(21) is essentially
equivalent to the criteria used in MacKay [4], Cohn [1], and Fukumizu [3].

In this paper, the minimization of ∆Jv is performed by multi-point-search, i.e., c locations are created
in the domain and the one minimizing ∆Jv is selected. The algorithm of two-stage active learning by
multi-point-search is described in Fig.1.

5 Computer simulations

In this section, the effectiveness of the proposed active learning method is demonstrated through computer
simulations.

Let us consider learning in a trigonometric polynomial space of order 100, i.e., H is spanned by
{1, sinnx, cosnx}100n=1 and the inner product is defined as

〈f, g〉 =
1
2π

∫ π

−π

f(x)g(x)dx. (22)



m← 0;
while N (Am) �= {0} { % Stage 1

Generate c locations {x(j)
m+1}cj=1 such that ψm+1 �∈ R(A∗

m) as candidates;
j0 ← argmin

j
∆Jv(x(j)

m+1);

Sample ym+1 at x
(j0)
m+1;

Carry out IPL with (x(j0)
m+1, ym+1);

m← m+ 1;
}
while m < M { % Stage 2

Generate c locations {x(j)
m+1}cj=1 as candidates;

j0 ← argmin
j

∆Jv(x(j)
m+1);

Sample ym+1 at x
(j0)
m+1;

Carry out IPL with (x(j0)
m+1, ym+1);

m← m+ 1;
}

Figure 1: Algorithm of two-stage active learning by multi-point-search.

Let the total number M of training examples to add be 500, and the noise covariance matrix be QM = IM .
In this case, projection learning gives the same learning result as usual least squares learning minimizing the
empirical error

∑m
j=1(yj − fm(xj))2. We shall compare the performance of the following sampling schemes.

(A) Proposed method: Training examples are sampled following the two-stage active learning method
shown in Fig.1. Let the number c of candidates be 3 and randomly generate them in the domain
[−π, π].

(B) Experimental design: Eq.(2) in Cohn [1] is adopted as the active learning criterion. The value of
this criterion is evaluated by 30 reference points. The next sampling location is determined by multi-
point-search with 3 candidates.

(C) Passive learning: Training examples are randomly supplied from the domain.

Note that the performance of sampling schemes can be fairly compared by this simulation since the
common model, learning criterion, and incremental learning method are adopted.

The changes in the variance through the addition of training examples are shown in Fig.2. The horizontal
axis denotes the number m of training examples while the vertical axis denotes the variance. The solid,
dashed, and dotted lines denote the means of 10 trials by the sampling schemes (A)–(C), respectively. In the
sampling scheme (A), it always holds that N (A201) = {0} because the dimension of H is 201 (see Section
4). In the sampling schemes (B) and (C), N (A201) = {0} was attained in all 10 trials in this simulation.
Hence, it follows from eq.(16) that the vertical axis in Fig.2 can be regarded as the generalization error when
m ≥ 201.

This graph shows that, when m ≤ 201, the variances of all sampling schemes increase, this phenomenon
is in good agreement with Proposition 3. When m = 201, the generalization error of the sampling scheme
(A) is 7.48 while the generalization errors of the sampling schemes (B) and (C) are 3.18×104 and 8.75×104,
respectively. When m > 201, the variances of all sampling schemes decrease as shown in Proposition 3. This
result shows that the sampling scheme (A) gives much better generalization capability than the sampling
schemes (B) and (C).

6 Conclusion

In this paper, we proposed a new active learning method called two-stage active learning. In many active
learning methods devised so far, the bias of the learning results is assumed to be zero. In contrast, the
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Figure 2: Relation between the number m of training examples and the variance in a trigonometric polyno-
mial space of order 100 with the noise covariance matrix Q500 = I500. The vertical axis can be regarded as
the generalization error when m ≥ 201.

proposed method did not require the assumption of zero-bias. Our simulation demonstrated the effectiveness
of the proposed method.
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