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Pseudo Orthogonal Bases (POBs)

Definition� �

H : a finite dimensional Hilbert space

M ≥ dim(H)

A set {φm}Mm=1 of elements in H is called a POB

if any f in H is expressed as

f =
M∑
m=1

〈f, φm〉φm,
where 〈·, ·〉 denotes the inner product in H .
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H = R2, M = 3

• If M = dim(H),

a POB is reduced to an ONB.

• A POB is

a tight frame with frame bound 1.

‖f‖2 =
M∑
m=1

|〈f, φm〉|2.

If ‖φ1‖ = ‖φ2‖ = · · · = ‖φM‖,
then {φm}Mm=1 is called

a pseudo orthonormal basis (PONB).
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Frame, POB, PBOB, · · ·

• Frame

– Duffin and Shaeffer (1952)

– Young (1980)

• Pseudo orthogonal basis (POB)

– Ogawa and Iijima (1973)

f =
M∑
m=1

〈f, φm〉φm

• Pseudo biorthogonal basis (PBOB)

– Ogawa (1978)

f =
M∑
m=1

〈f, φ∗m〉φm
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Signal restoration,

Computerized Tomography,

Neural Network Learning,
...
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Learning in Neural Networks
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Purpose of NN Learning� �

Modify weights by using training examples:

{(xm, ym) | ym = f (xm) + nm}Mm=1 ,

and obtain underlying input-output rule.
� �
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NN Learning as an Inverse Problem
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= Af + n

learning : f0 = Xy

representation of sampling operator A� �

A =
M∑
m=1

(em ⊗ ψm)

ψm(x) = K(x, xm)

K(x, x′) : reproducing kernel

〈f, ψm〉 = f (xm)
� �
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Trigonometric Polynomial Space

A Hilbert space H is called

a trigonometric polynomial space of order N

if H is spanned by

{exp(inx)}Nn=−N

which are defined on [−π, π]

and the inner product in H is defined as

〈f, g〉 =
1

2π

∫ π
−π f (x)g(x)dx.

K(x, x′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Profile of the reproducing kernel of

a trigonometric polynomial space of order 5 (x′ = 0).
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Process of NN Learning
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1. (Active Learning)

Sample points {xm}Mm=1 are determined.

2. Sample values {ym}Mm=1 are gathered.

3. X and f0 are calculated : Projection Learning

When noise covariance matrix is σ2I ,

X = A†.

A† is the Moore-Penrose generalized inverse of A.

Our goal� �

We give the optimal solution to active learning.

� �
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Active Learning

Find a set {xm}Mm=1 of sample points which minimizes

JG = En‖f0 − f‖2, Generalization error

where En denotes the ensemble average over the noise.

If noise covariance matrix is σ2I ,

then JG yields

JG = ‖PN (A)f‖2

︸ ︷︷ ︸
bias

+σ2tr((AA∗)†)︸ ︷︷ ︸
variance

,

where N (A) denotes the null space of A.

Bias of f0 is 0 ⇐⇒ N (A) = {0}

⇓
Strategy� �

Find a set {xm}Mm=1 of sample points which minimizes

JG = σ2tr((AA∗)†)

under the constraint of N (A) = {0}.
� �
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Main Theorem

Suppose noise covariance matrix is σ2I with σ2 > 0.

JG is minimized under the constraint of N (A) = {0}
if and only if

{ 1√
M
ψm}Mm=1 forms a PONB in H .

In this case, the minimum value of JG is

σ2(2N + 1)

M
.

f =
M∑
m=1

〈f, 1√
M
ψm〉 1√

M
ψm for all f ∈ H.

‖ψ1‖ = ‖ψ2‖ = · · · = ‖ψM‖

ψm(x) = K(x, xm)

K(x, x′) : reproducing kernel

K(x, x′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
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Interpretation

When { 1√
M
ψm}Mm=1 forms a PONB in H ,

‖Af‖ =
√
M‖f‖.

f0 = Xy = A†Af + A†n1 + A†n2.

A†Af = f ⇐= N (A) = {0}
A†n2 = 0 ⇐= X : Projection Learning

‖A†n1‖ = 1√
M
‖n1‖ ⇐= { 1√

M
ψm}Mm=1 : PONB

f

H
CM

X = A†f0

R(A)

n1

n2

Af

A

×√
M

× 1√
M

n

Amplification

Amplification

y = Af + n
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Examples of PONB –1–

Example 1� �

M ≥ 2N + 1 (= dim(H)),

c : −π ≤ c ≤ −π +
2π

M
.

If we put {xm}Mm=1 as

xm = c +
2π

M
(m− 1),

then { 1√
M
ψm}Mm=1 forms a PONB in H .

� �

−π π

x1 x2 · · · xM

M sample points are fixed to 2π/M intervals

and sample values are gathered once at each point.

ψm(x) = K(x, xm)

K(x, x′) : reproducing kernel

K(x, x′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Examples of PONB –2–

M = k(2N + 1) : k is a positive integer.

For a general finite dimensional Hilbert space H ,

{φm}Mm=1 becomes a PONB

if {√kφm}Mm=1 consists of k sets of ONBs in H .

Example 2� �

c : −π ≤ c ≤ −π +
2π

2N + 1
.

If we put {xm}Mm=1 as

xm = c +
2πp

2N + 1
: p = m− 1 (mod (2N + 1)),

then { 1√
M
ψm}Mm=1 forms a PONB in H .

� �

}
−π π

x1 x2 x2N+1

x2N+2 x2N+3 x2(2N+1)

· · ·
· · ·

... ... ...

xM−2N xM−2N+1 xM· · ·
k times

(2N + 1) sample points are fixed to 2π/(2N + 1) intervals

and sample values are gathered k times at each point.
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Computer Simulation 1

N = 3 (dim(H) = 7), M = 21

target function
learning result
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(A) Optimal sampling : JG = 0.333
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(B) Random sampling : JG = 1.202
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Computer simulation 2
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Conclusions

1. We showed that pseudo orthogonal bases (POBs)

give the optimal solution to active learning in

neural networks.

2. By utilizing properties of POBs, we clarified the

mechanism of achieving the optimal generalization.

3. We gave two construction methods of PONBs.



Active Learning in Neural Networks



Projection learning

f0 = XAf︸ ︷︷ ︸
signal

component

+ Xn︸ ︷︷ ︸
noise

component

minimize En‖Xn‖2

under the constraint of XAf = PR(A∗)f

H

approximation space

R(A∗)
f0

f

projection learning operator� �

X = V †A∗U † + Y (I − UU †)
Q : noise covariance matrix A∗ : adjoint operator of A

U = AA∗ +Q U † : Moore-Penrose

V = A∗U †A generalized inverse of U

Y : arbitrary operator
� �


