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Pseudo Orthogonal Bases (POBs) I

% Definition ~

H : a finite dimensional Hilbert space
M > dim(H)

A set {¢,, }2_, of elements in H is called a POB
if any f in H is expressed as

f — mj\2§1<fa ¢m>¢ma

where (-, -) denotes the inner product in H.

N )
f
”ﬁ o If M = dim(H),
____________ a POB is reduced to an ONB.
M o A POB s
a tight frame with frame bound 1.
_1/2 """""" 9 M 9

It ool = [l@all = - - - = lloarll,
then {¢,, 1, is called

a pseudo orthonormal basis (PONB).
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Frame, POB, PBOB, - -- I
o

— Dutffin and Shaeffer (1952)
— Young (1980)

— Ogawa and lijima (1973)

f= 5 {f 0n)on

— Ogawa (1978)

Signal restoration,

' Computerized Tomography,

Neural Network Learning,
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Learning in Neural Networks I
uy

modifiable weights

"~ synapses

“— neurons
- Purpose of NN Learning ~

Modify weights by using training examples:

{(@m, Ym) | Ym = f2m) + nm}m 1>

and obtain underlying input-output rule.

target fu nction f

Iearnlng result fj

X1 352 x3
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NN Learning as an Inverse Problem I
function space _ sample value
e sampling space
operator cM
target A ACRY
function f(x2)
e
- | ® \/au)
earning
operator ) T
X o
learning sample value
result vector
Y1
cy=1|: |=Af+n
Ym
fo=

—— representation of sampling operator A ————

M -
A = 2_:1<6m 2 ¢m)
¢7n<33> — K(*Q:a Im)
K(z,2") : reproducing kernel
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Trigonometric Polynomial Space I

A Hilbert space H is called
a trigonometric polynomial space of order N

it H is spanned by

{GXPWW)}QV:—N

which are defined on [—m, 7]
and the inner product in H is defined as

(F.9) = o [, fla)glayde

Profile of the reproducing kernel of
a trigonometric polynomial space of order 5 (' = 0).
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Process of NN Learning I

H

1. (Active Learning)
Sample points {z,, }_, are determined.

2. Sample values {y,, }*1_, are gathered.

3. X and fy are calculated : Projection Learning
When noise covariance matrix is o1,

X = Al

AT is the Moore-Penrose generalized inverse of A.

- Our goal N
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Active Learning I

Find a set {z,,}_, of sample points which minimizes

‘]G — EWHfO _ f”27

where F, denotes the ensemble average over the noise.

If noise covariance matrix is 021,
then Jg yields

Jo = || Py f1I? + o?tr((AAM)T),
bias variance
where NV (A) denotes the null space of A.

Biasof fois0 <= N(A)={0}

Y
- Strategy ~

Find a set {z,,}M_| of sample points which minimizes
Jo = o*tr((AAM))
under the constraint of N'(A) = {0}.
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Main Theorem I

Suppose noise covariance matrix is 021 with o > 0.

J is minimized under the constraint of N'(A) = {0}
if and only it
{Atm e, forms a PONB in H.

In this case, the minimum value of Jg is

o*(2N +1)
T
f= S )ty forall f € H
= > \/_m\/_m or a :
[l = llbal| = - = [[¥u]|

Ym(x) = Kz, 7))

K(x,2") : reproducing kernel

K(z,2') = :
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Interpretation I

When {ﬁwm}%ﬂ forms a PONB in H,
lAfI] = v MI[f]-

fo=Xy=ATAf + A'ny + A'n,.

AIAf = f = N(4)={0}
Ang = 0 <= X : Projection Learning
[ At = ]| = {A, A, PONB

CM
H L
Amplification — Af+n
. ~ a4 : [n
e ) :
fo X = Af / =
-~ T
X R(A)

Amplification
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Examples of PONB —1- I

- Example 1 ~

M > 2N +1 (=dim(H)),
2T

c . —Tnt<c< -7+ —.
- M

If we put {z,,}*_, as

27
m — Py _17
T = CF 5 (m—1)

then {ﬁwm}%zl forms a PONB in H.
N J

r1 I9 X\
— 00 0000000000000 0006006

M sample points are fixed to 27 /M intervals
and sample values are gathered once at each point.

Ym(x) = K(x, 7))

K(z,2') : reproducing kernel

2N + 1)(x — &' —
Sin< D aj)/smaj ‘
K(z,2') = :
2N + 1 (x =2')
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Examples of PONB —2— I

M = E(2N + 1) : k is a positive integer.

For a general finite dimensional Hilbert space H,
{dn M| becomes a PONB
if {\/k,, }Y_, consists of k sets of ONBs in H.

- Fxample 2 ~
27

OIN +1

c:—rm<c< —m+

If we put {z,,}*_, as

2Tp
= - p=m—1 (mod 2N + 1)),
X ¢+ ON < 1 p=m (mod (2N + 1))
then {ﬁwm}%zl forms a PONB in H.
N Y
TM—2N TM-2N+1 co M
332N+2 5132N+3 . x2(2N+1) ko times
I L2 e LIN+1
o o o |
s -

(2N + 1) sample points are fixed to 27 /(2N + 1) intervals
and sample values are gathered k times at each point.
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Computer Simulation 1 I

N =3 (dim(H) = 7), M =21

— target function
learning result

-10

(A_) Opt_imal _lsampoling . Ja — 0.333
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(B) Random Sampoling . Ja — 1.20
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Computer simulation 2

15

0.5 n

0 ! ! ! ! ! ! ! !
7 14 21 28 35 42 49 56 63 70

The number of training examples

— Optimal sampling
Random sampling (average of 100 trials)
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Conclusions I

1. We showed that pseudo orthogonal bases (POBs)
give the optimal solution to active learning in
neural networks.

2. By utilizing properties of POBs, we clarified the
mechanism of achieving the optimal generalization.

3. We gave two construction methods of PONBs.




ﬁ Active Learning in Neural Networks



Projection learning I

——

signal noise
component component

minimize E, || Xn]|?

under the constraint of ~ XAf = P f

R(A")

approximation space

- projection learning operator N
() : noise covariance matrix A* : adjoint operator of A
U=AA"+Q UT : Moore-Penrose
V =ATUA generalized inverse of U
Y . arbitrary operator




