Pseudo Orthogonal Bases

Give the Optimal Generalization Capability

in Neural Network Learning

Masashi Sugiyama Hidemitsu Ogawa

Department of Computer Science, Tokyo Institute of Technology, Japan

Pseudo Orthogonal Bases (POBs)

Definition

$$H$$
 : a finite dimensional Hilbert space
 $M \ge \dim(H)$

A set $\{\phi_m\}_{m=1}^M$ of elements in H is called a POB if any f in H is expressed as

$$f = \sum_{m=1}^{M} \langle f, \boldsymbol{\phi}_{m} \rangle \boldsymbol{\phi}_{m},$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in *H*.

- If $M = \dim(H)$, a POB is reduced to an ONB.
- A POB is

a tight frame with frame bound 1.

$$||f||^2 = \sum_{m=1}^{M} |\langle f, \phi_m \rangle|^2.$$

If
$$\|\phi_1\| = \|\phi_2\| = \dots = \|\phi_M\|$$
,
then $\{\phi_m\}_{m=1}^M$ is called
a pseudo orthonormal basis (PONB).

Frame, POB, PBOB, ···

• Frame

- Duffin and Shaeffer (1952)
- Young (1980)

• Pseudo orthogonal basis (POB)

- Ogawa and Iijima (1973)

$$f = \sum_{m=1}^{M} \langle f, \boldsymbol{\phi}_{m} \rangle \boldsymbol{\phi}_{m}$$

• Pseudo biorthogonal basis (PBOB)

- Ogawa (1978)

-

$$f = \sum_{m=1}^{M} \langle f, \phi_m^* \rangle \phi_m$$

Signal restoration, Computerized Tomography, Neural Network Learning, :

Learning in Neural Networks

NN Learning as an Inverse Problem

Trigonometric Polynomial Space

A Hilbert space H is called a trigonometric polynomial space of order Nif H is spanned by $\left\{\exp(inx)\right\}_{n=-N}^{N}$ which are defined on $[-\pi, \pi]$ and the inner product in H is defined as $\langle f,g\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g(x)}dx.$ $K(x, x') = \begin{cases} \sin\frac{(2N+1)(x-x')}{2} / \sin\frac{x-x'}{2} & (x \neq x') \\ 2N+1 & (x = x') \end{cases}$ Profile of the reproducing kernel of

- 1. (Active Learning) Sample points $\{x_m\}_{m=1}^M$ are determined.
- 2. Sample values $\{y_m\}_{m=1}^M$ are gathered.
- 3. X and f_0 are calculated : Projection Learning When noise covariance matrix is $\sigma^2 I$,

$$X = A^{\dagger}.$$

 A^{\dagger} is the Moore-Penrose generalized inverse of A.

- Our goal -

We give the optimal solution to active learning.

Active Learning

Find a set $\{x_m\}_{m=1}^M$ of sample points which minimizes $J_G = E_n ||f_0 - f||^2$, Generalization error

where E_n denotes the ensemble average over the noise.

If noise covariance matrix is $\sigma^2 I$, then J_G yields

$$J_G = \underbrace{\|P_{\mathcal{N}(A)}f\|^2}_{\text{bias}} + \underbrace{\sigma^2 \text{tr}((AA^*)^{\dagger})}_{\text{variance}},$$

where $\mathcal{N}(A)$ denotes the null space of A.

Bias of f_0 is $0 \iff \mathcal{N}(A) = \{0\}$

\Downarrow

— Strategy –

Find a set $\{x_m\}_{m=1}^M$ of sample points which minimizes

$$J_G = \sigma^2 \mathrm{tr}((AA^*)^\dagger)$$

under the constraint of $\mathcal{N}(A) = \{0\}.$

Main Theorem

Suppose noise covariance matrix is $\sigma^2 I$ with $\sigma^2 > 0$. J_G is minimized under the constraint of $\mathcal{N}(A) = \{0\}$ if and only if $\{\frac{1}{\sqrt{M}}\psi_m\}_{m=1}^M$ forms a PONB in H. In this case, the minimum value of J_G is $\frac{\sigma^2(2N+1)}{M}$.

$$f = \sum_{m=1}^{M} \langle f, \frac{1}{\sqrt{M}} \psi_m \rangle \frac{1}{\sqrt{M}} \psi_m \quad \text{for all } f \in H.$$
$$\|\psi_1\| = \|\psi_2\| = \dots = \|\psi_M\|$$

 $\psi_m(x) = K(x, x_m)$ K(x, x') : reproducing kernel $K(x, x') = \begin{cases} \sin \frac{(2N+1)(x-x')}{2} / \sin \frac{x-x'}{2} & (x \neq x') \\ 2N+1 & (x = x') \end{cases}$

Interpretation

When
$$\{\frac{1}{\sqrt{M}}\psi_m\}_{m=1}^M$$
 forms a PONB in H ,
 $\|Af\| = \sqrt{M}\|f\|.$

$$f_0 = Xy = A^{\dagger}Af + A^{\dagger}n_1 + A^{\dagger}n_2.$$

$$A^{\dagger}Af = f \qquad \longleftrightarrow \qquad \mathcal{N}(A) = \{0\}$$

$$A^{\dagger}n_2 = 0 \qquad \longleftrightarrow \qquad X : \text{Projection Learning}$$

$$\|A^{\dagger}n_1\| = \frac{1}{\sqrt{M}}\|n_1\| \qquad \longleftrightarrow \qquad \{\frac{1}{\sqrt{M}}\psi_m\}_{m=1}^M : \text{PONB}$$

Examples of PONB –1–

Example 1

$$M \ge 2N + 1 (= \dim(H)),$$

$$c : -\pi \le c \le -\pi + \frac{2\pi}{M}.$$
If we put $\{x_m\}_{m=1}^M$ as

$$x_m = c + \frac{2\pi}{M}(m-1),$$
then $\{\frac{1}{\sqrt{M}}\psi_m\}_{m=1}^M$ forms a PONB in $H.$

$$\underbrace{x_1 \ x_2 \ \cdots \ x_M}_{-\pi}$$

M sample points are fixed to $2\pi/M$ intervals and sample values are gathered once at each point.

$$\psi_m(x) = K(x, x_m)$$

$$K(x, x') : \text{reproducing kernel}$$

$$K(x, x') = \begin{cases} \sin \frac{(2N+1)(x-x')}{2} / \sin \frac{x-x'}{2} & (x \neq x') \\ 2N+1 & (x = x') \end{cases}$$

Examples of PONB –2–

$$M = k(2N + 1)$$
: k is a positive integer.

For a general finite dimensional Hilbert space H, $\{\phi_m\}_{m=1}^M$ becomes a PONB if $\{\sqrt{k}\phi_m\}_{m=1}^M$ consists of k sets of ONBs in H.

- Example 2 -

$$c: -\pi \le c \le -\pi + \frac{2\pi}{2N+1}$$

If we put
$$\{x_m\}_{m=1}^M$$
 as
 $x_m = c + \frac{2\pi p}{2N+1}$: $p = m - 1 \pmod{(2N+1)}$,
then $\{\frac{1}{\sqrt{M}}\psi_m\}_{m=1}^M$ forms a PONB in H .
 x_{M-2N} x_{M-2N+1} \dots x_M
 \vdots \vdots \vdots x_M
 \vdots \vdots \vdots \vdots \vdots x_M
 \vdots \vdots \vdots \vdots \vdots x_M
 \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots x_M

(2N+1) sample points are fixed to $2\pi/(2N+1)$ intervals and sample values are gathered k times at each point.

Conclusions

- 1. We showed that pseudo orthogonal bases (POBs) give the optimal solution to active learning in neural networks.
- 2. By utilizing properties of POBs, we clarified the mechanism of achieving the optimal generalization.
- 3. We gave two construction methods of PONBs.

Projection learning

