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Abstract

In many practical situations in neural network learning,
training data is supplied one by one. Therefore, it is im-
portant to consider to add new training data to neural
networks in order to further improve their generaliza-
tion capability. In this paper, a method of incremental
projection learning in the presence of noise is presented.
The proposed method provides exactly the same learn-
ing result as that obtained by batch projection learning.
By using the method, a criterion for redundancy of an
additional datum is derived, and the relationship be-
tween a prior and a posterior learning results is studied.
Moreover, a simple form of incremental projection learn-
ing under certain conditions is given. Finally, the effec-
tive of the proposed method is demonstrated through
computer simulations.
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1 Introduction

Learning is obtaining an underlying rule by using train-
ing data sampled from the environment. Neural net-
works (NNs) are expected not only to memorize the
training data, but also to acquire the generalization ca-
pability.

In many practical situations, training data is sup-
plied one by one. Therefore, it is important to con-
sider to add new training data to NNs in order to fur-
ther improve their generalization capability. Compared
with the learning methods of human beings, it is nat-
ural to build a posterior learning result upon a prior
result. This learning method is generally called incre-
mental learning. Incremental learning also plays an im-
portant role when we work on active learning, which is
extensively studied recently (MacKay [5], Fukumizu [3],

Sugiyama and Ogawa [13]). In these methods, train-
ing data which should be learned next is determined by
analyzing the intermediate learning result. Therefore,
incremental learning is indispensable for performing ac-
tive learning.

Many incremental learning methods have been de-
vised so far. Many of them are based on the idea of
generating a novel hidden unit when new training data
is added, and adjusting weights on the connections to
the novel unit (Platt [12], Kadirkamanathan and Niran-
jan [4], Vysniauskas et al. [17], Molina and Niranjan
[6], Yingwei et al. [18], Vijayakumar and Schaal [16]).
Yamauchi and Ishii [20] took an interesting approach.
First, the region which will be interfered with by incre-
mental learning is inferred, and artificial training data
which will prevent the interference is created. Then
incremental learning takes place by using both newly
added and created training data. Although computa-
tion becomes efficient by these methods, the optimal
generalization may not be guaranteed. Recently, an-
other incremental learning method has been proposed,
which provides asymptotically the same generalization
capability as that obtained by batch learning (Amari
[2]). However, the optimal generalization in the non-
asymptotic case may not be guaranteed.

Ogawa [9] formulated the NN learning problem as an
inwverse problem from the functional analytic point of
view. It has been shown that the optimal image restora-
tion filters such as projection filter (Ogawa [8]), Wiener
filter (Ogawa and Oja [10]) etc. can be applied to the
NN learning problem. These filters are called projection
learning, Wiener learning etc. in the learning problem.
Within the framework, incremental Wiener learning in
the absence of noise has been devised (Vijayakumar and
Ogawa [15]), in which generalization capability is proved
to be exactly the same as that obtained by batch Wiener
learning. In this paper, we present a method of in-
cremental projection learning in the presence of noise,
which provides exactly the same generalization capabil-
ity as that obtained by batch projection learning.

This paper is organized as follows: Section 2 formu-



lates the NN learning. In Section 3, a method of incre-
mental projection learning is proposed. Section 4 points
out that some of the training data which is rejected in
usual incremental learning methods have potential effec-
tiveness, and an improved criterion for redundancy of an
additional datum is derived. Section 5 studies the rela-
tionship between a prior and a posterior learning results
where effective training data is classified into two cat-
egories as regards improving generalization capability.
In Section 6, a simple form of the proposed incremen-
tal learning method under certain conditions is given.
Finally, Section 7 is devoted to computer simulations,
which demonstrates the effectiveness of the proposed in-
cremental learning method.

2 Formulation of NN learning
problem

In this section, the NN learning problem is formulated
(See Ogawa [9]).

Let us consider a learning problem of three-layer feed-
forward NNs whose number of input and output units
are L and 1, respectively. The relationship between in-
put @ = (n1,---,nz) and output y of the network is
represented by using a function fy of L variables as

y = fo(z). (1)

The NN learning problem is to obtain the optimal ap-
proximation to an original function f from a set of m
training data made up of inputs z; € RE and corre-
sponding outputs y; € C:

{(xuyz)lyzzf($z)+nl = 1525"'77”’}5 (2)

where y; is degraded by additive noise n;.

In many NN learning methods devised so far, learning
algorithms are built upon certain architecture of NNs,
1.e., a fixed number of hidden units, each with a pre-
specified sigmoidal or Gaussian functions. However, the
restrictions sometimes prevent us from obtaining the op-
timal approximation. Therefore, we may divide our NN
learning problem into two steps: The first step performs
a function approximation from given training data, and
a NN which represents the approximated function is con-
structed in the second step.

To begin with, we explain a function approximation
problem which corresponds to the first step. Let n(™
and y("™ denote rn-dimensional vectors whose i-th ele-
ments are n; and y;. respectively. 3™ is called a sam-
ple value vector, and a space which y("™ belongs to is
called a sample value space. In this paper, the under-
lying function f is assumed to belong to a reproducing
kernel Hilbert space H. Let D be the domain of f.
The reproducing kernel is a bivariate function defined
on D x D which satisfies the following conditions:

e For any fixed 2’ in D, K(#,2') is a function of z in

H.

e Tor any function f in H and for any z’ in D, it
holds that

(f(), K (- 2")) = f(a'), (3)
where (-,-) denotes the inner product in H.

Note that the reproducing kernel is unique if it exists.
In the theory of the Hilbert space, arguments are devel-
oped by regarding a function as a point in that space.
Thus, the value of a function at a point can not be
discussed within the general framework of the Hilbert
space. However, if the Hilbert space has a reproducing
kernel, then it is possible to deal with the value of a
function at a point. If a function v;(z) is defined as

Yi(z) = K(z,2;), (4)

then the value of f at a sample point x; is expressed as
fzi) = (£, 4i)- (5)

For this reason, 1; is called a sampling function. Once
i, is fixed, the relationship between

a training set {z; }7"
f and y™ can be represented as

y = Anf + 0™, (6)
where A,, is called a sampling operator. Note that A,

is always a linear operator. A, is expressed by using
the Newmann-Schatten product! as

Am = E (egm) ® E) ) (7)
i=1
where e(m) is an m-dimensional vector where all ele-

2
ments are zero except the i-th element which is equal to
one. Let us denote a learning result obtained from m
training data by f,,, and the relationship between y()
and f,, as

f'm, = me(m)’ (8)

where X, is called a learning operator. Consequently,
the first step of the NNs learning problem can be refor-
mulated as an inverse problem of obtaining X, which
provides the best approximation f,, to f under a certain
criterion. Since image and signal restoration problems
discussed in Ogawa [8] and Ogawa et al. [11] are also
formulated as the same form of inverse problems, the

1For any g in a Hilbert space H; and f in a Hilbert space Hs,
the Neumann-Schatten product (f ® g) is an operator from H; to
Hjy, which is defined by using any h € H; as

(f@gh={(h.g)f



optimal image restoration filters devised in these papers
can be applied to the function approximation problem.

Now we go on to the second step, i.e., the construction
of a NN which represents f,,,. In this step, the number N
of hidden units, an input-output function u;(z) of each
hidden unit, and weights w; on hidden-output connec-
tions are determined. A NN which represents a function
obtained in the first step is called an Optimally Gener-
alizing NN (OGNN). A general construction method of
OGNNs was given in Ogawa [9]. The method shows
that there exist infinite degrees of freedom in OGNNs.
Utilizing these degrees of freedom effectively, Nakazawa
and Ogawa [7] gave a robust construction method of
OGNNs. NNs constructed by the method are specifi-
cally resistant to noise on the output of hidden units
and connection faults.

3 Incremental projection learn-
ing

As mentioned in the previous section, the NNs learn-
ing problem is divided into two steps. In this paper,
we focus on the function approximation problem corre-
sponding to the first step.

We adopt the projection learning criterion. Let F,,,
Ay, R(Ay,), and Pr(a: ) be the ensemble average over
noise, the adjoint operator of A,,, the range of A7, and
the orthogonal projection operator onto R(A%,), respec-
tively. Then, projection learning is defined as follows:

Definition 1 (Projection learning)(Ogawa [8]) An
operator X, is called the projection learning operator if
X, minimazes the functional

Tp[Xm] = En|| Xmn!™ |I? (9)
under the constraint

From egs.(8) and (6), a learning result f,, can be de-
composed as

fn = XmAmf + Xmnt™. (11)
The first and second terms of eq.(11) are called the sig-
nal and noise components of f,,, respectively. The pro-
jection learning criterion requires the signal component
to coincide with the orthogonal projection of f onto
R(AZ,) and the noise component to minimize its vari-
ance.

Under the projection learning criterion, we shall de-
vise an incremental learning method in the presence
of noise. We call the method incremental projection
learning (IPL). It has been shown that a learning re-
sult obtained by projection learning does not depend on

Cm+1

batch
learning

Cm

Figure 1: Exact incremental learning and batch learn-
ing.

the inner product in a sample value space (Yamashita
and Ogawa [19]). Hence, the Euclidean inner product is
adopted without loss of generality.

First, we show a general form of the projection learn-
ing operator. Let I,,, and Y, be the identity matrix on
C™ and an arbitrary operator from C™ to H, respec-
tively, and

Qm = En (n(m) ® n(m)) » (12)
Un = AmArn, + an (13)
Vi = ALUL AL, (14)

where t indicates the Moore-Penrose generalized in-
2

verse”.
Proposition 1 (Ogawa [8]) A general form of the pro-
jection learning operator is represented as

X =VIA UL +Y,, (I, — U,UL). (15)

mTTm o m

Let us consider the case where the (m 4 1)-st training
datum (%41, Ym+1) is added to f,,. It follows from
eq.(8) that a learning result f,,,11 obtained from (m+1)
training data can be represented in a batch manner as

fm+1 = Xm+1y(m+1)' (16)

The suflix m + 1 indicates the number of total training
data. In order to devise an exact incremental learn-
ing method, let us calculate f,,; by using f, and
(Tmt1s Yma1), as illustrated in Fig.1.

Let the noise characteristics of an additional training
datum (Z.,41, Ym+1) be

(17)
(18)

dm+1 — En(nm+1n(m))a

Om+1 = En(nfn+1)'

2An operator X which satisfies the following four conditions
is called the Moore-Penrose generalized inverse of an operator A

(Albert [1]):

AXA=A, XAX =X, (AX)*

= AX, (XA)" = XA.

Note that the Moore-Penrose generalized inverse is unique.



Note that ¢,,41 is an m-dimensional vector while 0,41
is a scalar. Let m-dimensional vectors $,41, tm+1, and
a scalar au, 41 be

Sm+1 = Am'l/)erl + ¢m+1, (19)
tm,+1 UrTn 5m,+1 5 (20)
AUmyp1 = ”¢m+1(wm+1) + Omt1 — <tm+1a 5m+1>' (21)

In this case, we have
Lemma 1 U, is non-negative if and only if

€ R(U,),
> 0.

(22)
(23)

Sm—+1

A1

It follows from eqs.(13) and (12) that U,,41 is always
non-negative®. Hence, eqs.(22) and (23) hold.

Whether a,,+1 is zero or not is crucial in the deriva-
tion of IPL. First, we discuss the case ay,41 = 0.

Theorem 1 If a,, 11 = 0, then

fmr1 = fm- (24)

Theorem 1 says that the learning result does not
change at all by adding (%41, Ym+1) if dmp1 = 0. Gen-
erally, the training data which causes f,,11 = f,, is re-
garded as redundant. However, as shown in Section 4,
the redundancy of training data can not be judged by
simply comparing fo,4+1 with f,,.

Next, we focus on the case o471 > 0. Let ./\/(Am) be
the null space of A,,. In order to introduce the main
theorem, we define the following notation.

m

Matrix: Ipyr = Z (65:m+1) ® egm)) . (25)
=1
Functions: ¥, = Prra,)Vme1s (26)
bmt1 = Pmt1 — Antmt, (27)
£'m,+1 = Vn—[Lgm,+1 . (28)
Scalar: ﬂm+1 Ym+1 — fm(mm-i-l)

- <y(m) - Amfma tm+1>- (29)

Theorem 2 (Incremental projection learning)
When aup1 > 0, a posterior projection learning result
fm+1 is obtained by using prior results f,,, A, Ut s

m

Vi, and y(™ as
f’m,+1 = f'm, + ﬁm,+1<m,+17 (30)
where (m+1 18 given as follows:
(a) When i1 & R(AL),
Cog1 = A (31)

Pmr1 (Tmy1)

3An operator U is said to be non-negative if (Uf, f) > 0 for
any f. (U f, f) > 0for any f # 0, U is said to be positive.

(b) When v,,+1 € R(AL),

£m+1
@it F (Emats Emrr)

C’m-l—l = (32)

Note that 3,,+1 depends on the value of y,,11 while
Cm+1 does not. The difference in the conditions (a) and
(b) is studied in Section 4 and Section 5.

4 Effectiveness of additional train-

ing data

In this section, we point out that some of the train-
ing data which is rejected in usual incremental learning
methods have potential effectiveness as a matter of fact.
Based on this, an improved criterion for redundancy of
additional training data is derived.

In many incremental learning methods devised so far,
an additional training datum (%m,41,¥m,1) 18 rejected
if the posterior result f,,4+1 is exactly the same as the
prior result f, (Platt [12], Kadirkamanathan and Ni-
ranjan [4], Molina and Niranjan [6], Yingwei et al. [18]).
However, this sometimes leads us to waste valuable in-
formation. So as to make the claim sure, we show a
simple example:

Let a function space H be spanned by

{sin 6z, sin 10z, sin 15z}, (33)
and the inner product in H be defined as
2 (3
(o) =2 [7 fn(o) do. (34)
0
Let an original function be f = 9sin6x 4+ 5sin 15z.

For the sake of simplicity, the learning takes place in
the absence of noise in this example. The original
function f and a learning result f; obtained by using
(r1,91) = (%, f(§)) are shown as solid and dotted lines,
respectively, in Fig.2 (a). Adding (z2,92) = (3, f(5)) to
f1, we obtain a learning result fs, which agrees with f;.
Now we comply with the usual criterion for redundancy,
L.e., we reject (za,y2) since it causes fa = fi. A learning
result f; obtained by adding (z3,y3) = (§. f(§)) to f1 is
shown as a dashed line in Fig.2 (b). On the other hand,
if we use (z2,y2) without rejection and add (z3,ys) to
f2, we obtain a learning result f;3 shown as a solid line
in the same figure. f3 agrees with the original function
f. The example says that f3 acquires higher generaliza-
tion capability compared with f3. This implies (z2,y2)
is essentially useful.

The reason why (zs,y2) has potential effectiveness
can be understood from the functional analytic point of
view. The geometrical relationships between the origi-
nal function f, learning results f1, f2, f3, and f3 in the



Figure 2: Example of the training data which is regarded
as redundant in traditional incremental learning meth-
ods but it is effective.

function space H are shown in Fig.3. In the absence of
noise, a projection learning result f,,, is coincident with
the orthogonal projection of f onto R(A%,). R(AL) is
called the approximation space for f.. Since f belongs
to R(A7) + N (Az) in this example, we have

f2 = Preags)f = Preanyf = 1, (35)
as shown in Fig.3 (a). Rejecting (z3,¥2) and adding
(z3,9y3) to f1, we obtain f (See Fig.3 (b)). In this case,
the approximation space for fi, denoted by R(A%"), be-
comes a two-dimensional subspace. Since f does not
belong to R(A%Y), f5 does not agree with f. On the
other hand, if we use (x2,ys) without rejection and add
(x3,y3) to f2, we obtain f3. In this case, R(Aj) becomes
a three-dimensional subspace which coincides with H.
Since f belongs to R(A3), fs agrees with f. After all,
the difference between f; and f; is caused by the dif-
ference in approximation spaces, i.e., R(A}) is a proper
subspace of R(A3).

So far, additinal training data was said to be redun-
dant if it causes f,,+1 = fm- However, the redundancy
of additional training data can not be judged by simply
comparing f,,+1 with f,,. Now we define real effec-
tiveness and redundancy of an additional training da-
tum. Let f,, be a learning result obtained by using
{(xi,9:) }i2,, and fma1 be a learning result obtained by

(b)
Figure 3: Geometrical interpretation of the training
data which is regarded as redundant in traditional meth-
ods but it is effective.

adding (#,9) to fm. Let fm4; and fm+i+;[ be learning
results obtained by adding { (%4, y,,,,,+_,-)};-:1 to f,, and

fm+1 , respectively.

Definition 2 (&,9) is said to be effective if there ewists
at least one set of training data which causes fo,4; #
fm+i+1. Conversely, training data which is not effective
15 said to be redundant.

Note that the above concepts depends on f, f,., A,
and U . Based on the definition of redundancy, a crite-
rion for redundancy of an additional datum is given as
follows:

Theorem 3 (Redundancy criterion) (Zm+1,Ym+1)
is redundant if €,,11 = 0, where &,11 is the function

defined by eq.(27)

It is shown that f,,41 = f., if and only if one of the
following four conditions holds:



(a) i1 =0,
(b) Nyp1 > 07 7pm,+1 ¢ R(A:n)7 and ﬂm,—&-l = 07

(¢) amt1 >0, Pmy1 € R(A7), Cmr1 # 0, and frgr =
0

(d) Am+1 > 07 ,l/)erl € R(A*n)7 and Cm+1 = 0’

where @415 Bmt1s Ymt1. and (41 are given by
eqs.(21), (29), (4), and (32), respectively. Among these
conditions, &,,41 = 0 if and only if (a) or (d) holds.
Note that the condition (a) and (d) do not depend on
the value of ym,41 while (b) and (c¢) do, which implies
that an additional datum is judged to be redundant if
it causes f,,+1 = fn independently of y,,, 1.

5 Improving generalization ca-
pability through IPL

The previous section clarified the redundancy of addi-
tional training data. In this section, the characteristics
of effective additional training data are studied from the
viewpoint of improving generalization capability. The
mean of noise is assumed to be zero through this sec-
tion.

In this section, we measure the generalization error of
a learning result f,, by

Jo = Ballf - full. (36)
Eq.(36) can be decomposed as follows:
Proposition 2 (Takemura [14]) It holds that

To = f = Eufull + Bl Bufm = ful®. (37)

The first and second terms of eq.(37) are called the
bias and variance of the generalization error, respec-
tively. Let J, and .J, be the changes in the bias and
variance of the generalization error by adding a training
datum, respectively, i.e.,

If = Bofull® = I = Enfnsa || (38)
EnHEnfm,_f'm||2_En||Enf'm,+1_fm,+1||2- (39)

Jy =
J'I’

Then, we have

Theorem 4 For any additional datum (T;,41,Yma1)
satisfying Emv1 # 0, the following relations hold:

(a) When iy & R(A7,).

Jy >0, J,<O0. (40)
(b) When i1 € R(A7,),
Jy=0, J,>O0. (41)

Theorem 4 says that additional training data satis-
fying ¥m+1 € R(AL,) reduces or maintains the bias of
the generalization error while it increases or maintains
the variance. On the other hand, additional training
data satisfying ¢,,11 € R(A],) maintains the bias while
it reduces the variance. Note that additional training
data satisfying ¢¥,+1 & R(AJ,) possibly causes J, = 0
and J, = 0, which yields f,,+1 = f,,. However, it is
not redundant since &,,41 # 0 as shown in the previous
section.

6 Simple representation of IPL

In this section, a simple form of IPL under certain con-
ditions is given.

Suppose the noise correlation matrix is positive and
diagonal, i.e.,

Qi1 = diag(o1, 02, -+, 0mt1),s (42)

where o; > 0 for all 4. Let an operator V! from H to H
be
Vi = ALQ A

m m

(43)
In this case, we have
Theorem 5 If Q,, is given by eq.(42) with o; > 0 for

all i, a posterior projection learning result fo, 11 s 0b-
tained by using prior results f,, and VI as

Frmt1 = fm + Brog1 G (44)
where
ﬂ:n—}-l =Ym+1 — fm(wm+1), (45)
and (), 1 are given as follows:
(a) When thmiy & R(AL,),
/IZm-i-l
(1 = = (46)
T G (@ng)
(b) When mi1 € R(A},),
Vilthm
C;n+1 = e (47)

o—'m,+1 + <Vr’r;r7,b'rn+17 ¢m,+1> .

Compared with Theorem 2, eq.(29) is replaced with
eq.(45) in Theorem 5. This implies that Theorem 5
does not require {y;}™, for calculating f,,4+1. In the
case Pymp1 € R(AL), eq.(31) is the same as eq.(46). On
the other hand, in the case 9,11 € R(AL,), eq.(32) is
replaced by eq.(47) where ay,11 does not appear. Al-
though a,,,1 played an important role in the derivation
of Theorem 2, it is not required for Theorem 5 since
it is always positive if the noise correlation matrix is
positive.
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Figure 4: Learning simulation. Solid and dotted lines denote the original function f and a learning result, respec-
tively. o indicates training data. The upper three graphs show learning results in the case Q,, = I, while the
bottom three graphs show learning results in the case Q.,, = 31,

7 Computer simulations

In this section, computer simulations are performed to
show the effectiveness of the proposed incremental learn-
ing method.

First, IPL is compared with a resource allocating net-
work (RAN) proposed by Platt [12], where radial basis
functions (RBFs) are adopted as its hidden activation
functions. In RAN, a novel hidden unit is added if an
additional datum satisfies the novelty criteria. Next,
IPL is compared with so-called on-line back propaga-
tion (on-line BP), where each training data is used once
and never used again. Sigmoidal functions are adopted
as hidden activation functions.

Let us consider the problem of approximating the fol-
lowing function:

2 — 146—3(1;—2.5)2 _ 56—6(:1:—(].5)2

f

+3¢73%" 4 19¢—(@+2:5)" (48)

whose domain is [—m, 7]. Learning simulations are car-
ried out in the following conditions:

(a) IPL: H is spanned by {1,siniz,cosiz};_,, and the

inner product in H is defined as

T

Com ),

(f.9) (z)g(z)dz. (49)

(b) RAN: Parameters are assigned as 60, = 1, £ =
0.87, dmin = 0.05, and € = 0.01.

(c) on-line BP: The number of hidden units is fixed
to 30 through the learning process.

Note that the original function f does not belong to
H in (a), and it is not realizable in (b) and (c). In
this simulation, we measure the generalization error of
a learning result fy by

125
1
Gen.err = —

126 4
2=0

[f (=7 + 0.057) — fo(—m + 0.05i)].

(50)

Forty training data {(z;,y;)}i2; is randomly sampled
from the domain.

Learning results in the case @Q,,, = I,,, are shown in the

upper half of Fig.4. Solid and dashed lines denote the

original function f and a learning result of each method,



respectively. o indicates training data. The generaliza-
tion errors of IPL, RAN, and on-line BP measured by
eq.(50) are 0.32, 0.86, and 3.25, respectively. The re-
sults say that IPL provides a better generalization ca-
pability than RAN and on-line BP do. Note that RAN
also works well in this simulation. Learning results in
the case @, = 3I,, are shown in the bottom half of
Fig.4. The generalization errors of IPL, RAN, and on-
line BP are 1.23, 8.61, and 3.89, respectively. In the
second simulation, IPL also provides a better general-
ization capability than RAN and on-line BP do. The
generalization errors of the learning results of RAN and
on-line BP are very large, which implies that RAN and
on-line BP may not sufficiently suppress the effect of
noise.

From the point of view of learning criteria, the reason
why IPL works well can be explained as follows: For
the signal component of the learning result, the pro-
jection learning criterion aims for minimizing the gen-
eralization error while the criteria of RAN and on-line
BP aims for fitting an additional datum. For the noise
component of the learning result, the projection learn-
ing criterion requires the effect of noise to be systemat-
ically suppressed. On the other hand, RAN and on-line
BP avoid over-fitting to the noisy data by smoothing a
learning result, which is achieved by appropriately de-
termining the width of RBFs, the number of hidden
units, etc. Since a learning result obtained by IPL is
exactly the same as that obtained by batch projection
learning, IPL provides a better generalization capability

than RAN and on-line BP do.

8 Conclusion

A method of incremental projection learning in the pres-
ence of noise was presented. The proposed method pro-
vides exactly the same learning result as that obtained
by batch projection learning even in the non-asymptotic
case. It is demonstrated through computer simulations
that the proposed method provides a better generaliza-
tion capability than RAN and on-line BP do.
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