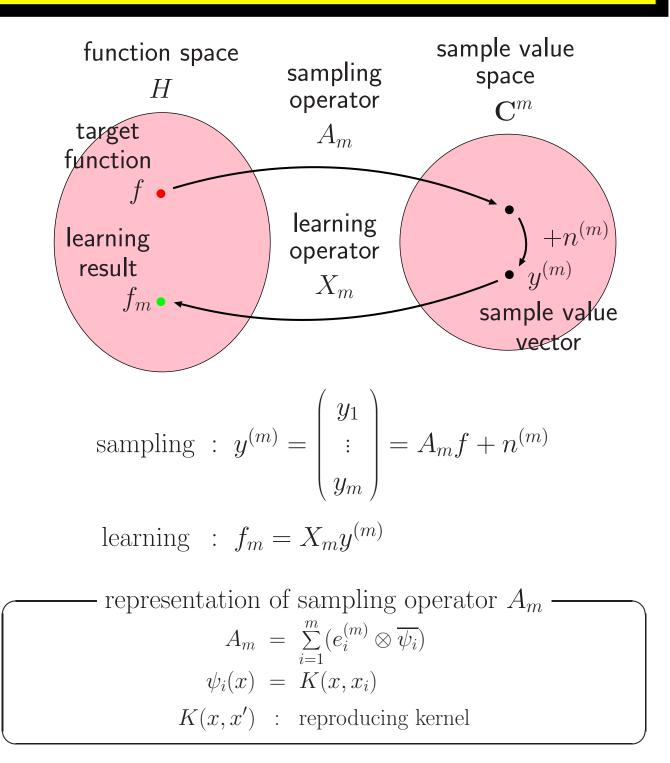
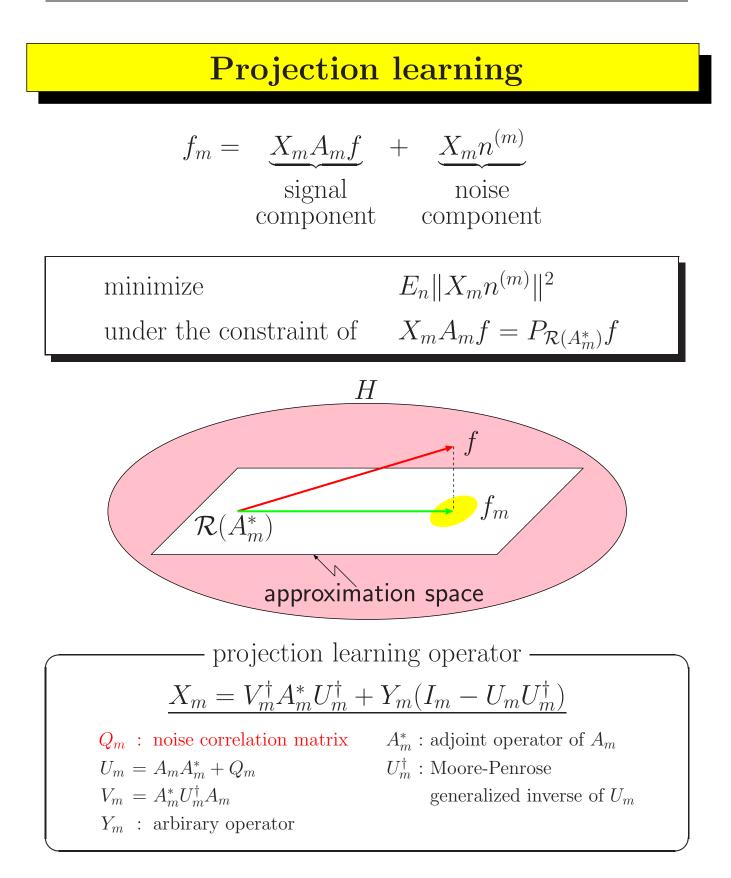


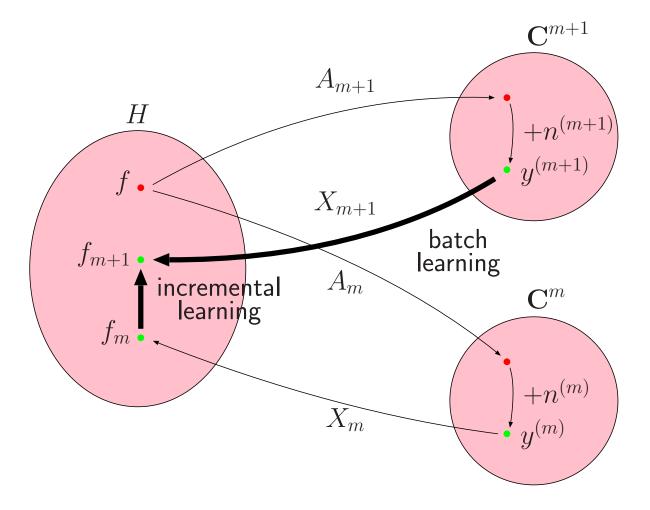
NN learning as an inverse problem





Incremental learning

In practical situations, training example (x_{m+1}, y_{m+1}) is often added to further improve the generalization capability after f_m has been obtained.



Former research

• Novel hidden units are added as new training examples are provided.

 \longrightarrow Too many hidden units!

• Resource Allocating Network (RAN). (Platt, 1991) Novelty criteria are introduced to control the increase of hidden units.

→ Old training examples tend to be forgotten!

Some of the old training examples are stored in buffer. (Yoneda *et al.* 1992; Yamakawa *et al.* 1993) Artificial examples are created. (Yamauchi *et al.* 1997)

-----> Gereralization capability is not guaranteed!

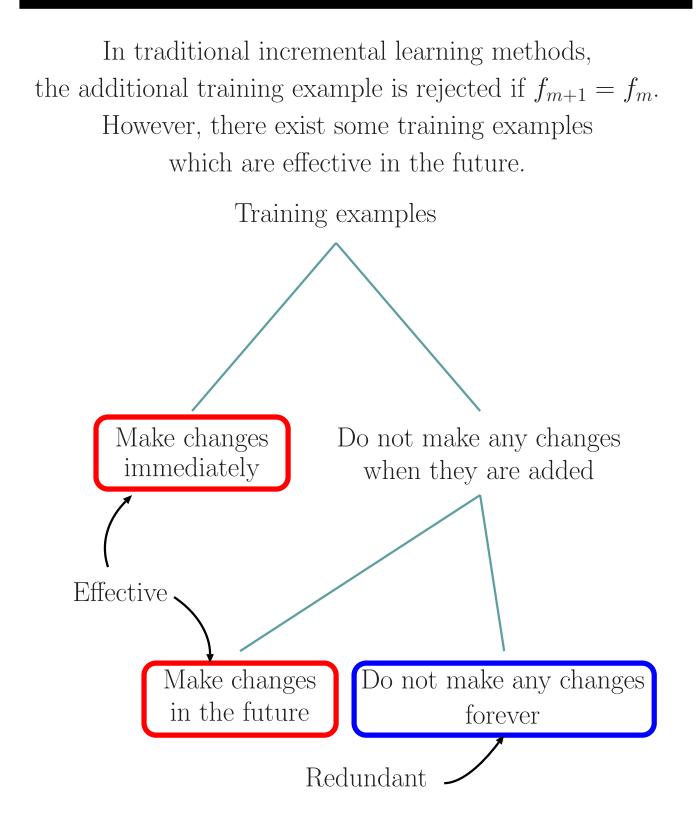
Natural gradient method. (Amari 1998)
 Same result as batch learning can be asymptotically obtained.

 \longrightarrow # of training examples is finite in practice!

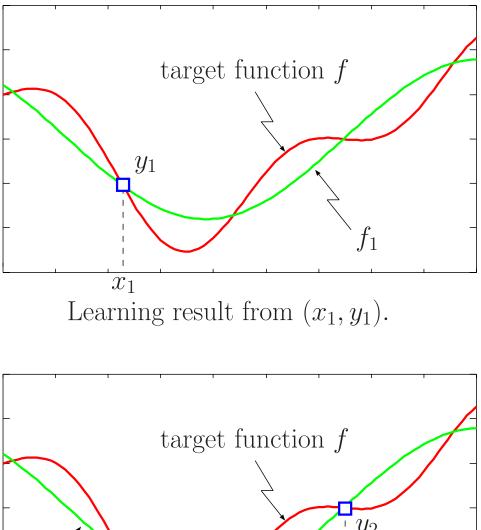
— Objectives –

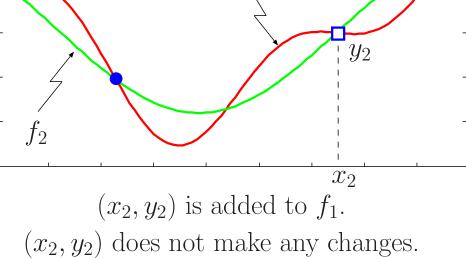
Development of an incremental learning method which gives the same result as batch learning when the number of training examples is finite.

Potentially effective training examples

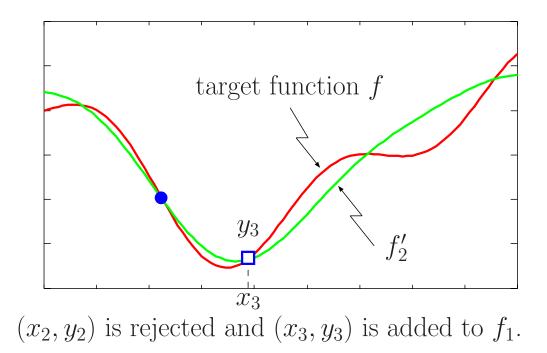


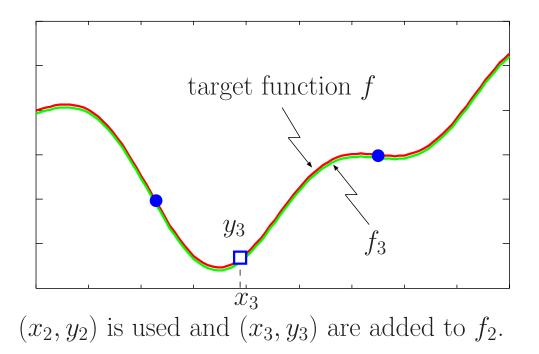
Potentially effective training examples





Potentially effective training examples





Incremental projection learning

(i) When $\xi_{m+1} = 0$,

 (x_{m+1}, y_{m+1}) is rejected since it is redundant.

(ii) When
$$\xi_{m+1} \neq 0$$
,

$$\underline{f_{m+1}} = f_m + \beta_{m+1}\zeta_{m+1}$$

 β_{m+1} : scalar determined from (x_{m+1}, y_{m+1}) ζ_{m+1} : function calculated from x_{m+1} .

(a) When $\psi_{m+1} \in \mathcal{R}(A_m^*)$,

$$\zeta_{m+1} = \frac{\tilde{\xi}_{m+1}}{\alpha_{m+1} + \langle \tilde{\xi}_{m+1}, \xi_{m+1} \rangle}$$

(b) When $\psi_{m+1} \notin \mathcal{R}(A_m^*)$,

$$\zeta_{m+1} = \frac{\tilde{\psi}_{m+1}}{\tilde{\psi}_{m+1}(x_{m+1})}$$

Other variables $\Gamma_{m+1} = \sum_{i=1}^{m} (e_i^{(m+1)} \otimes \overline{e_i^{(m)}}) \quad \tilde{\psi}_{m+1} = P_{\mathcal{N}(A_m)}\psi_{m+1}$ $\psi_{m+1} = K(x, x_{m+1}) \quad \xi_{m+1} = \psi_{m+1} - A_m^* t_{m+1}$ $\sigma_{m+1} = E_n(n_{m+1}^2) \quad \tilde{\xi}_{m+1} = V_m^{\dagger} \xi_{m+1}$ $q_{m+1} = E_n(n_{m+1}n^{(m)}) \quad h_{m+1} = e_{m+1}^{(m+1)} - \Gamma_{m+1}(t_{m+1} + X_m^* \xi_{m+1})$ $s_{m+1} = A_m \psi_{m+1} + q_{m+1} \quad \alpha_{m+1} = \psi_{m+1}(x_{m+1}) + \sigma_{m+1} - \langle t_{m+1}, s_{m+1} \rangle$ $t_{m+1} = U_m^{\dagger} s_{m+1} \quad \beta_{m+1} = y_{m+1} - f_m(x_{m+1}) - \langle y^{(m)} - A_m f_m, t_{m+1} \rangle$

Bias and variance

Let E_n be the ensemble average over noise. Let us measure the generalization error of f_m by

$$J_G = E_n ||f_m - f||^2$$

= $\underbrace{||E_n f_m - f||^2}_{\text{Bias}} + \underbrace{E_n ||f_m - E_n f_m||^2}_{\text{Variance}}.$
Let J_b and J_v be changes in bias and variance:
$$J_b = ||E_n f_{m+1} - f||^2 - ||E_n f_m - f||^2,$$

$$J_v = E_n ||f_{m+1} - E_n f_{m+1}||^2 - E_n ||f_m - E_n f_m||^2.$$

Assume the mean of noise is zero. For any additional training example (x_{m+1}, y_{m+1}) satisfying $\xi_{m+1} \neq 0$, (a) when $\psi_{m+1} \notin \mathcal{R}(A_m^*)$, $J_b = 0$ and $J_v < 0$. (b) when $\psi_{m+1} \in \mathcal{R}(A_m^*)$, $J_b \leq 0$ and $J_v \geq 0$.

Let us perform the interploation of f(t):

$$f(-1 + \frac{t}{100}) = g(t + \tau + 1) \quad \text{for } 1 \le t \le 199$$

(a) IPL : $H = \mathcal{L}(\{x^n\}_{n=0}^{19})$. The inner product in H is $\langle f, g \rangle = \int_{-1}^{1} f(x) \overline{g(x)} dx$

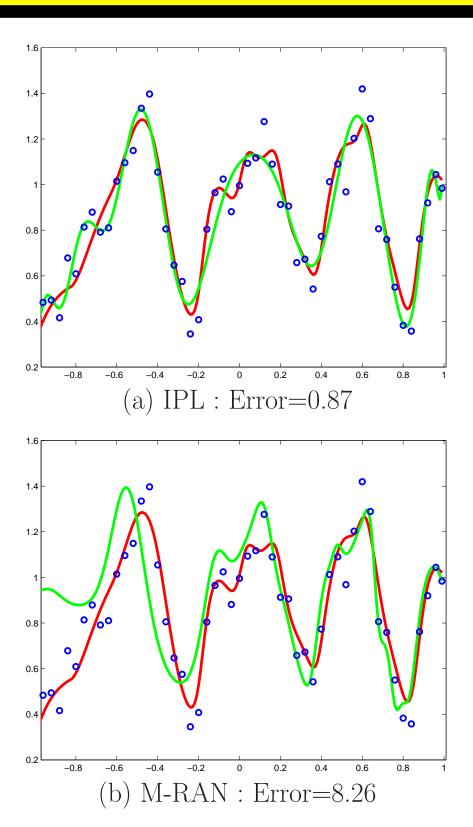
(b) M-RAN : (Yingwei et al. 1997, 1998)

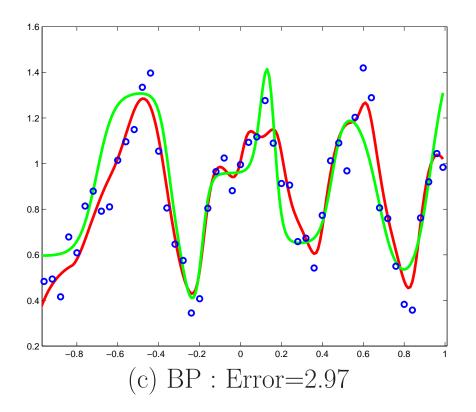
Parameters are assigned as

 $\epsilon_{max} = 0.18, \ \epsilon_{min} = 0.04, \ \gamma = 0.96, \ e_{min} = 0.004, \ e'_{min} = 0.006, \ \kappa = 0.8, \ P_0=1, \ P_n = 0.19, \ M = 30, \ \delta = 0.000001$

(c) BP (Batch learning) : # of hidden units is 20.

Error =
$$\sum_{k=1}^{199} \left[f(-1 + \frac{k}{100}) - f_0(-1 + \frac{k}{100}) \right]^2$$





- In M-RAN, old training examples are forgotten.
- The learning result of IPL does not depend on the order of training examples.
- IPL gives better generalization capability than M-RAN and BP.
- Tuning of parameters in IPL is easier than M-RAN.

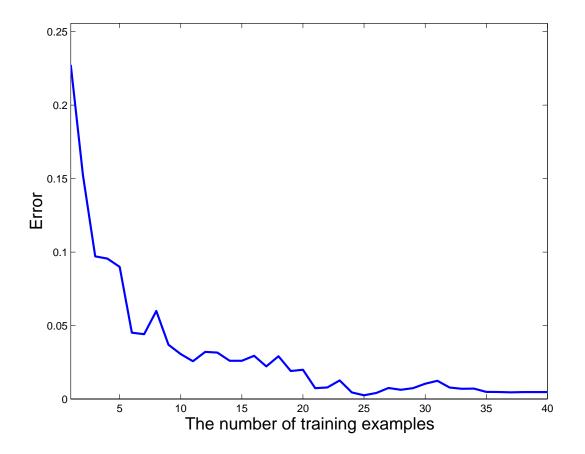
Computer simulation 2 Learning of sensorimotor maps of 2-joint robot arm - θ_2 joint2 τ_2 θ_1 joint1 au_1 The tip of robot arm moves in a plane. — Sensorimotor map -Mapping from posture $\theta_1, \dot{\theta}_1, \ddot{\theta}_1, \theta_2, \dot{\theta}_2, \ddot{\theta}_2$ to torque τ_1, τ_2 which should be applied to joints: joint 1: $\tau_1 = f_1(\theta_1, \dot{\theta}_1, \ddot{\theta}_1, \theta_2, \dot{\theta}_2, \ddot{\theta}_2)$ joint 2: $\tau_2 = f_2(\theta_1, \dot{\theta}_1, \ddot{\theta}_1, \theta_2, \dot{\theta}_2, \ddot{\theta}_2)$

Function spaces which include sensorimotor maps —

$$H_{1} = \{ \ddot{\theta}_{1}, \ \ddot{\theta}_{1} \cos \theta_{2}, \ \ddot{\theta}_{2}, \ \ddot{\theta}_{2} \cos \theta_{2}, \ \dot{\theta}_{2}^{2} \sin \theta_{2}, \\ \dot{\theta}_{1} \dot{\theta}_{2} \sin \theta_{2}, \ \sin \theta_{1}, \ \sin \theta_{1} \cos \theta_{2}, \ \sin \theta_{2} \cos \theta_{1} \}$$

$$H_{2} = \{ \ddot{\theta}_{1}, \ \ddot{\theta}_{1} \cos \theta_{2}, \ \ddot{\theta}_{2}, \\ \dot{\theta}_{1}^{2} \sin \theta_{2}, \ \sin \theta_{1} \cos \theta_{2}, \ \sin \theta_{2} \cos \theta_{1} \}$$

Error
$$= \frac{1}{c} \int (f(\theta) - f_0(\theta))^2 d\theta$$



- 1. We proposed a new incremental learning method which provides exactly the same generalization capability as that obtained by batch learning.
- 2. Tune of parameters is easier than former methods.
- 3. Due to the reproducing kernel, the proposed method is applicable to the problem where input dimension is very large.