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Abstract

In this paper, we consider the problem of active learning in trigonomet-
ric polynomial networks and give a necessary and sufficient condition of
sample points to provide the optimal generalization capability. By ana-
lyzing the condition from the functional analytic point of view, we clarify
the mechanism of achieving the optimal generalization capability. We
also show that a set of training examples satisfying the condition does
not only provide the optimal generalization but also reduces the compu-
tational complexity and memory required for the calculation of learning
results. Finally, examples of sample points satisfying the condition are
given and computer simulations are performed to demonstrate the effec-
tiveness of the proposed active learning method.

1 Introduction

Supervised learning is obtaining an underlying rule from training examples, and can
be formulated as a function approximation problem. If sample points are actively
designed, then learning can be performed more efficiently. In this paper, we discuss
the problem of designing sample points, referred to as active learning, for optimal
generalization.

Active learning is classified into two categories depending on the optimality. One
is global optimal, where a set of all training examples is optimal (e.g. Fedorov
[3]). The other is greedy optimal, where the next training example to sample is
optimal in each step (e.g. MacKay [5], Cohn [2], Fukumizu [4], and Sugiyama and
Ogawa [10]). In this paper, we focus on the global optimal case and give a new ac-
tive learning method in trigonometric polynomial networks. The proposed method
does not employ any approximations in its derivation, so that it provides exactly
the optimal generalization capability. Moreover, the proposed method reduces the
computational complexity and memory required for the calculation of learning re-
sults. Finally, the effectiveness of the proposed method is demonstrated through
computer simulations.
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2 Formulation of supervised learning

In this section, the supervised learning problem is formulated from the functional
analytic point of view (see Ogawa [7]). Then, our learning criterion and model are
described.

2.1 Supervised learning as an inverse problem

Let us consider the problem of obtaining the optimal approximation to a target
function f(x) of L variables from a set of M training examples. The training
examples are made up of sample points xm ∈ D, where D is a subset of the L-
dimensional Euclidean space RL, and corresponding sample values ym ∈ C:

{(xm, ym) | ym = f(xm) + nm}M
m=1, (1)

where ym is degraded by zero-mean additive noise nm. Let n and y be M -
dimensional vectors whose m-th elements are nm and ym, respectively. y is called
a sample value vector. In this paper, the target function f(x) is assumed to be-
long to a reproducing kernel Hilbert space H (Aronszajn [1]). If H is unknown,
then it can be estimated by model selection methods (e.g. Sugiyama and Ogawa
[9]). Let K(·, ·) be the reproducing kernel of H . If a function ψm(x) is defined
as ψm(x) = K(x, xm), then the value of f at a sample point xm is expressed as
f(xm) = 〈f, ψm〉, where 〈·, ·〉 stands for the inner product. For this reason, ψm is
called a sampling function. Let A be an operator defined as

A =
M∑

m=1

(
em ⊗ ψm

)
, (2)

where em is the m-th vector of the so-called standard basis in CM and (· ⊗ ·)
stands for the Neumann-Schatten product1. A is called a sampling operator. Then,
the relationship between f and y can be expressed as

y = Af + n. (3)

Let us denote a mapping from y to a learning result f0 by X:

f0 = Xy, (4)

where X is called a learning operator. Then, the supervised learning problem is
reformulated as an inverse problem of obtainingX providing the best approximation
f0 to f under a certain learning criterion.

2.2 Learning criterion and model

As mentioned above, function approximation is performed on the basis of a learning
criterion. Our purpose of learning is to minimize the generalization error of the
learning result f0 measured by

JG = En‖f0 − f‖2, (5)

where En denotes the ensemble average over noise. In this paper, we adopt projec-
tion learning as our learning criterion. Let A∗, R(A∗), and PR(A∗) be the adjoint
operator of A, the range of A∗, and the orthogonal projection operator onto R(A∗),
respectively. Then, projection learning is defined as follows.

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the
Neumann-Schatten product (f ⊗ g) is an operator from H1 to H2 defined by using any
h ∈ H1 as (f ⊗ g)h = 〈h, g〉f .



Definition 1 (Projection learning) (Ogawa [6]) An operator X is called the
projection learning operator if X minimizes the functional JP [X] = En‖Xn‖2 under
the constraint XA = PR(A∗).

It is well-known that Eq.(5) can be decomposed into the bias and variance:

JG = ‖PR(A∗)f − f‖2 + En‖Xn‖2. (6)

Eq.(6) implies that the projection learning criterion reduces the bias to a certain
level and minimizes the variance.

Let us consider the following function space.

Definition 2 (Trigonometric polynomial space) Let x = (ξ(1),ξ(2),· · ·,ξ(L))�.
For 1 ≤ l ≤ L, let Nl be a positive integer and Dl = [−π, π]. Then, a function
space H is called a trigonometric polynomial space of order (N1, N2, · · · , NL) if H
is spanned by {

L∏
l=1

exp(inlξ
(l))

}N1,N2,···,NL

n1=−N1,n2=−N2,···,nL=−NL

(7)

defined on D1 × D2 × · · · × DL, and the inner product in H is defined as

〈f, g〉 =
1

(2π)L

∫ π

−π

∫ π

−π

· · ·
∫ π

−π

f(x)g(x)dξ(1)dξ(2) · · ·dξ(L). (8)

The dimension µ of a trigonometric polynomial space of order (N1, N2, · · · , NL) is
µ =

∏L
l=1(2Nl + 1), and the reproducing kernel of this space is expressed as

K(x, x′) =
L∏

l=1

Kl(ξ(l), ξ(l)′), (9)

where

Kl(ξ(l), ξ(l)′) =

⎧⎨
⎩ sin (2Nl+1)(ξ(l)−ξ(l)′ )

2

/
sin ξ(l)−ξ(l)′

2
if ξ(l) �= ξ(l)

′
,

2Nl + 1 if ξ(l) = ξ(l)
′
.

(10)

3 Active learning in trigonometric polynomial space

The problem of active learning is to find a set {xm}M
m=1 of sample points providing

the optimal generalization capability. In this section, we give the optimal solution
to the active learning problem in the trigonometric polynomial space.

Let A† be the Moore-Penrose generalized inverse2 of A. Then, the following propo-
sition holds.

Proposition 1 If the noise covariance matrix Q is given as Q = σ2I with σ2 > 0,
then the projection learning operator X is expressed as X = A†.

Note that the sampling operator A is uniquely determined by {xm}M
m=1 (see Eq.(2)).

From Eq.(6), the bias of a learning result f0 becomes zero for all f in H if and only
if N (A) = {0}, where N (·) stands for the null space of an operator. For this reason,

2An operator X is called the Moore-Penrose generalized inverse of an operator A if X
satisfies AXA = A, XAX = X , (AX)∗ = AX , and (XA)∗ = XA.
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Figure 1: Mechanism of noise suppression by Theorem 1. If a set {xm}M
m=1 of sample

points satisfies A∗A = MI, then XAf = f , ‖Xn1‖ = 1√
M
‖n1‖, and Xn2 = 0.

we consider the case where a set {xm}M
m=1 of sample points satisfies N (A) = {0}.

In this case, Eq.(6) is reduced to

JG = En‖A†n‖2, (11)

which is equivalent to the noise variance in H . Consequently, the problem of active
learning becomes the problem of finding a set {xm}M

m=1 of sample points minimizing
Eq.(11) under the constraint N (A) = {0}.
First, we derive a condition for optimal generalization in terms of the sampling
operator A.

Theorem 1 Assume that the noise covariance matrix Q is given as Q = σ2I with
σ2 > 0. Then, JG in Eq.(11) is minimized under the constraint N (A) = {0} if and
only if

A∗A = MI, (12)
where I denotes the identity operator on H. In this case, the minimum value of JG

is σ2µ/M , where µ is the dimension of H.

Eq.(12) implies that { 1√
M
ψm}M

m=1 forms a pseudo orthonormal basis (Ogawa [8])
in H , which is an extension of orthonormal bases. The following lemma gives
interpretation of Theorem 1.

Lemma 1 When a set {xm}M
m=1 of sample points satisfies Eq.(12), it holds that

XAf = f for all f ∈ H, (13)

‖Af‖ =
√
M‖f‖ for all f ∈ H, (14)

‖Xu‖ =
{ 1√

M
‖u‖ for u ∈ R(A),
0 for u ∈ R(A)⊥.

(15)

Eqs.(14) and (15) imply that 1√
M
A becomes an isometry and

√
MX becomes a

partial isometry with the initial space R(A), respectively. Let us decompose the
noise n as n = n1 +n2, where n1 ∈ R(A) and n2 ∈ R(A)⊥. Then, the sample value
vector y is rewritten as y = Af + n1 + n2. It follows from Eq.(13) that the signal
component Af is transformed into the original function f by X. From Eq.(15), X
suppresses the magnitude of noise n1 in R(A) by 1√

M
and completely removes the
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Figure 2: Two examples of sample points such that Condition (12) holds (µ = 3
and M = 6).

noise n2 in R(A)⊥. This analysis is summarized in Fig.1. Note that Theorem 1 and
its interpretation are valid for all Hilbert spaces such that K(x, x) is a constant for
any x.

In Theorem 1, we have given a necessary and sufficient condition to minimize JG

in terms of the sampling operator A. Now we give two examples of sample points
{xm}M

m=1 such that Condition (12) holds. From here on, we focus on the case when
the dimension L of the input x is 1 for simplicity. However, the following results
can be easily scaled to the case when L > 1.

Theorem 2 Let M ≥ µ, where µ is the dimension of H. Let c be an arbitrary
constant such that −π ≤ c ≤ −π + 2π

M . If a set {xm}M
m=1 of sample points is

determined as
xm = c+

2π
M

(m− 1), (16)

then Eq.(12) holds.

Theorem 3 Let M = kµ where k is a positive integer. Let c be an arbitrary
constant such that −π ≤ c ≤ −π + 2π

µ . If a set {xm}M
m=1 of sample points is

determined as
xm = c+

2π
µ
r, where r = m− 1 (mod µ), (17)

then Eq.(12) holds.

Theorem 2 means that M sample points are fixed to 2π/M intervals in the domain
[−π, π] and sample values are gathered once at each point (see Fig.2 (a)). In con-
trast, Theorem 3 means that µ sample points are fixed to 2π/µ intervals in the
domain and sample values are gathered k times at each point (see Fig.2 (b)).

Now, we discuss calculation methods of the projection learning result f0(x). Let hm

be the m-th column vector of the M -dimensional matrix (AA∗)†. Then, for general
sample points, the projection learning result f0(x) can be calculated as

f0(x) =
M∑

m=1

〈y, hm〉ψm(x). (18)

When we use the optimal sample points satisfying Condition (12), the following
theorems hold.

Theorem 4 When Eq.(12) holds, the projection learning result f0(x) can be calcu-
lated as

f0(x) =
1
M

M∑
m=1

ymψm(x). (19)



Theorem 5 When sample points are determined following Theorem 3, the projec-
tion learning result f0(x) can be calculated as

f0(x) =
1
µ

µ∑
p=1

ypψp(x), where yp =
1
k

k∑
q=1

yp+µ(q−1) . (20)

In Eq.(18), the coefficient of ψm(x) is obtained by the inner product 〈y, hm〉. In
contrast, it is replaced with ym/M in Eq.(19), which implies that the Moore-Penrose
generalized inverse of AA∗ is not required for calculating f0(x). This property
is quite useful when the number M of training examples is very large since the
calculation of the Moore-Penrose generalized inverse of high dimensional matrices
is sometimes unstable. In Eq.(20), the number of basis functions is reduced to µ
and the coefficient of ψp(x) is obtained by yp/µ, where yp is the mean sample values
at xp.

For general sample points, the computational complexity and memory required for
calculating f0(x) by Eq.(18) are both O(M2). In contrast, Theorem 4 states that
if a set of sample points satisfies Eq.(12), then both the computational complexity
and memory are reduced to O(M). Hence, Theorem 1 and Theorem 4 do not only
provide the optimal generalization but also reduce the computational complexity
and memory. Moreover, if we determine sample points following Theorem 3 and
calculate the learning result f0(x) by Theorem 5, then the computational complexity
and memory are reduced to O(µ). This is extremely efficient since µ does not depend
on the number M of training examples. The above results are shown in Tab.1.

4 Simulations

In this section, the effectiveness of the proposed active learning method is demon-
strated through computer simulations.

Let H be a trigonometric polynomial space of order 100, and the noise covariance
matrix Q be Q = I. Let us consider the following three sampling schemes.

(A) Optimal sampling: Training examples are gathered following Theorem 3.
(B) Experimental design: Eq.(2) in Cohn [2] is adopted as the active learning

criterion. The value of this criterion is evaluated by 30 reference points. The
sampling location is determined by multi-point-search with 3 candidates.

(C) Passive learning: Training examples are given unilaterally.

Fig.3 shows the relation between the number of training examples and the gener-
alization error. The horizontal and vertical axes display the number of training
examples and the generalization error JG measured by Eq.(5), respectively. The
solid line shows the sampling scheme (A). The dashed and dotted lines denote the
averages of 10 trials of the sampling schemes (B) and (C), respectively. When the
number of training examples is 201, the generalization error of the sampling scheme
(A) is 1 while the generalization errors of the sampling schemes (B) and (C) are
3.18×104 and 8.75×104, respectively. This graph illustrates that the proposed sam-
pling scheme gives much better generalization capability than the sampling schemes
(B) and (C) especially when the number of training examples is not so large.

5 Conclusion

We proposed a new active learning method in the trigonometric polynomial space.
The proposed method provides exactly the optimal generalization capability and



Table 1: Computational complexity
and memory required for projection

learning.

Calculation
methods

Computational
Complexity

and
Memory

Eq.(18) O(M2)

Theorem 4 O(M)

Theorem 5§ O(µ)

§M = kµ where µ is the dimension
of H and k is a positive integer.
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Figure 3: Relation between the number of
training examples and the generalization er-
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at the same time, it reduces the computational complexity and memory required
for the calculation of learning results. The mechanism of achieving the optimal
generalization was clarified from the functional analytic point of view.
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