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Supervised LearningSupervised Learning

Estimating underlying rule from training examples

By using the acquired rule,

we can give appropriate output to unknown input

This ability is called generalization capability
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Active Learning (1)Active Learning (1)

The level of generalization depends 
heavily on the choice of sample points.
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This 
research

Incremental active learning

Optimize the next sample point

(MacKay 1992, Cohn 1994, Fukumizu 1996, 
Sugiyama and Ogawa 1999)

Active Learning (2)Active Learning (2)
The problem of designing sample points for optimal 

generalization is called active learning.

Batch active learning

Optimize the set of all sample points

(Fedorov 1972)
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Supervised LearningSupervised Learning
As an Inverse ProblemAs an Inverse Problem

Subspace Information Criterion (SIC)
(Sugiyama and Ogawa 1999)
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Projection LearningProjection Learning
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Projection Learning OperatorProjection Learning Operator

We assume that the noise covariance matrix Q is
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Then, the projection learning operator X is given as
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Trigonometric Polynomial Space (1)Trigonometric Polynomial Space (1)
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Trigonometric Polynomial Space (2)Trigonometric Polynomial Space (2)
of dimension  The µ
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Generalization MeasureGeneralization Measure
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Main TheoremMain Theorem
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InterpretationInterpretation

H
MC

f

,When * MIAA =

)(AR

A
M×

fMAf =

Af
n

y

y Af + n=

+A0f

M
1×

yA+
0f = AfA+ + 1nA+ + 2nA+=

1nA+

11
1 n
M

nA =+

1n

1n

2n

Af + + 2n=

)( *AN

f

HAR =)( *

0

)( *
2 ANn ∈



14

Example of Sample Points (1)Example of Sample Points (1)
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,2 is   ofdimension  When the x

M sample points are fixed to regular intervals in the domain
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Example of Sample Points (2)Example of Sample Points (2)

integer positive a :k

( )µ
µ
π  mod 1  :  2

−=+= mppcxm

π− πc
µπ2

1x
4x

2x
5x

3x
6x

6  ,3  ,1 === MN µ

µ
πππµ 2:        , +−≤≤−= cckM

)dim(H=µ

,1 is   ofdimension  When the x



17

,2 is   ofdimension  When the x ( ) , )2()1( ξξ=x
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Calculation of Learning ResultsCalculation of Learning Results
Sample Points 
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Simulation (1)Simulation (1)
)7)dim(( 3order  of space polynomial tric trigonome: =HH

21 is examples  trainingof #

(a) Optimal sampling (b) Random sampling

Our method gives a 72.3% reduction in generalization error
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Simulation (2)Simulation (2)
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ConclusionConclusion

A necessary and sufficient condition of 
sample points to provide the optimal 
generalization capability was given
The mechanism of achieving the optimal 
generalization was clarified
An efficient calculation method of learning 
results was given


