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Supervised Learning

Estimating underlying rule from training examples

N4

By using the acquired rule,

we can give appropriate output to unknown input

This ability is called generalization capability




Function Approximation Problem

, learning target f (x)

A

learning result f (x)

X, -sample point
y.. :sample value

X, X, X Vo = (%),

Obtain the optimal approximation to f(x)
from training examples{(x_,y )},




Active Learning (1)

VW

— Target function
Learning result

" The level of generali'zation depénds
heavily on the choice of sample points.




Active Learning (2)

The problem of designing sample points for optimal
generalization is called active learning.

B Incremental active learning

Optimize the next sample point

(MacKay 1992, Cohn 1994, Fukumizu 1996,
Sugiyama and Ogawa 1999)

B Batch active learning
Optimize the set of all sample points This
(Fedorov 1972) eeel
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Supervised Learning
As an Inverse Problem

H sampling operator cM
A
learning
operator
X
Subspace Information Criterion (SIC)
(Sugiyama and Ogawa 1999) Z=( f (Xl) f(XZ) f()(,w))T
A - . e(M) ®_ = o o T
Zs (&0 O¥) y=Af +n n=(n n, Ny )
l//m(X):K(X’Xm) y:(y1 Yo 0 Ywm )T
K (x, X') : Reproducing kernel fO — Xy
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(- ® -):Schatten product



Projection Learning

f, = XAf + Xn
Signal H(;E(’e

component component

RS 2
Minimize E,|Xn|
under the constraint ~ XAf =P, . f
E_ : Noise average R(A"): The range of A"
A" : Adjoint operatorof A P, .. :Orthogonal projection onto R(A")

H

~— Approximation space




Projection Learning Operator

We assume that the noise covariance matrix Q is

Q=0o"l.

Then, the projection learning operator X Is given as

Xo== AL

A" :Moore - Penrose generalized inverse of A
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Trigonometric Polynomial Space (1)

L et x = (5(1),5(2),,,,’95@))_

A function space H is called

a trigonometric polynomial space of order N =(N,,N,,---,N,)

If H Isspanned by

L

{H exp(in.f‘”)}
=1

and the inner product is defined as

(f.0)=[ [ 100900asde®-as.

Ny Ny, N

N ==Ng,N;==Np,---,n ==N



Trigonometric Polynomial Space (2)

The dimension « of
a trigonometric polynomial space of order N =(N,,N,,---,N_)is

H :ll_:[(ZNl +1)

and the reproducing kernel is

K (x, X =f[K.(<§<”,§“>')

(1 1) (,) (|) :
K.@“%&“)’) foin SRS )/ sin S-S if 0 2 g0

2N, +1 it ey = 20
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Generalization Measure

~E,|f, - sz
P oary f — f (AN
“ ~ o\ .y J
Bias Variance

The biasis zero forall f € H if and only if R(A™) = H.

Our strategy

2

Find{x_}" . minimizing E_|A"n
under the constraint R(A™) = H.
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Main Theorem

J. Isminimized if and only if
A A= MlI.
2

The minimum value of J IS %.

A= Z:\::l My ) w. (X)=K(X,X,) K(xXx):Reproducing kernel

o’ 1noise variance 4 :dimensionof H M :#of training examples

m: Is equivalent to tha T"”m » forms

M
a pseudo orthonormal basis,
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When A"A = MI,

Interpretation
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Example of Sample Points (1)

When the dimension of x 1s1,

M > 1, c:—zSCS—ﬂJrZ%

27
Xo=C+—(m=1

— ¢ ——— 6 I >
— 7T C T
27T

14



When the dimension of x IS 2,

N =(L1), £=9

M =25

M sample points are fixed to regular intervals in the domain
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Example of Sample Points (2)

When the dimension of x 1s1,

K :a positive integer

M=ku  c: —7z<c<—7z+2/

X_ _c+2—p p=m—-1(mod x)
7,

N=1 =3 M=6 p=dim(H)
X, X X,
X X, X3
—e ° —
— C Y T
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When the dimension of x IS 2,

1 sample points are fixed to regular intervals in the domain

sample values are gathered k times at each point
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Calculation of Learning Results

Expression of Computational

Sample Points ] ] Memory
Learning Result Complexity
M
General Y. (yh .00 O(M?*) O(M ?)
m=1

A"A = M ﬁiymwm(x) OM) O(M)

Example (2) %Zﬂﬁpwp(x) O(u) O(u)

b= (M =ku)

M :number of training examples

Our method )

nr Viielé)qotimal generalization h. :m-th column vector of (AA)"
» Complexity reduction y, :average of sample valuesat x,
»Memory reduction 11 dimension of H .




Simulation (1)

H : trigonometric polynomial space of order 3 (dim(H) =7)
# of training examplesis 21

(a) Optimal sampling (b) Random sampling

8- - 1S
51 g 6l
ar - al
2r B 2
or b R o
2 o E 2
4 ol b 4
[

6 B 6
8k B S
10 =

3

‘JG —(0.333 ‘JG —1.202 —— Target function

Learning result

Our method gives a 72.3% reduction in generalization error
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Simulation (2)

H : trigonometric polynomial space of order 100 (dim(H) = 201)

10

= Optimal sampling
9- = Experimental design | -
Passive leaming

The generalization error

| | 1 1 | | | 1
250 300 350 400 450 500 550 600
The number of training examples
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Conclusion

A necessary and sufficient condition of
sample points to provide the optimal
generalization capability was given

The mechanism of achieving the optimal
generalization was clarified

An efficient calculation method of learning
results was given
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