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Abstract

In this paper, we discuss the problem of active training data selection
in the presence of noise. We formalize the learning problem in neural
networks as an inverse problem using a functional analytic framework
and use the Averaged Projection criterion as our optimization criterion
for learning. Based on the above framework, we look at training data
selection from two objectives, namely, improving the generalization abil-
ity and secondly, reducing the noise variance in order to achieve better
learning results. The final result uses the apriori correlation information
on noise characteristics and the original function ensemble to devise an
efficient sampling scheme, which can be used in conjunction with the in-
cremental learning schemes devised in our earlier work to achieve optimal
generalization.

1 Introduction

It has been well known that supervised learning in non-asymptotic cases is
highly data dependent. The level of generalization, 1.e., the ability to correctly
respond to novel inputs, achievable using a fixed number of training data is
heavily dependent on the quality of the data used[9]. Tt is also interesting to
note that many natural learning systems are not simply passive but make use
of at least some form of active learning to examine the problem domain. By
active learning, we mean any form of learning in which the learning program
has some control over the inputs over which it trains.

The problem of “active learning” has been extensively studied in economic
theory and statistics [1]. Optimal data selection within the Bayesian frame-
work for interpolation have been studied by Luttrell[4] and MacKay[5]. Tt has
been shown that a smaller training set gathered by an active learner produces



generalization performance equal to or better than a much larger data set con-
taining redundant examples [7].Plutowski and White [6] assume that a large
amount of data has been collected and work on principles of selecting a subset
of that data for efficient training; the entire data sets (inputs and outputs) is
consulted at each iteration to decide which example to add, an option that is
not permitted in this work.

Here, we look at the learning problem from a functional analytic perspec-
tive and define an optimization measure which decides on the usefulness of the
training data. Works based on the Shannon entropy and Fisher’s information
criterion [2] already exist. We use the Averaged Projection criterion described
in Section 3.1, a criterion which enforces a trade-off between expanding the
approximation space and reducing the noise variance. The training data se-
lection scheme developed here works in two phases. At first, a batch selection
of m data to optimize generalization is carried as shown in Section 4.1. Since,
selection of the data incorporates additive noise, as a second stage, more data is
added incrementally with a view to reduce the effect of noise by exploiting the
apriori information on the noise correlation matrix as shown in Section 4.2. The
effectiveness of this sampling scheme is demonstrated through a simulation.

2 Functional analytic framework for learning

Let us consider a three-layer feedforward neural network whose number of input,
hidden, and output units are L, N, and 1, respectively. It can be easily shown
that the input-output relationship of such a network is equivalent to a real
valued function of L variables. Based on this interpretation, it follows that
the learning in Neural Networks(NNs) is analogous to obtaining an optimal
approximation f,,, to a desired function f from the set of m training data made
up of the inputs z; € R and the corresponding outputs y; € R :

i yi)lyi = fles) +ns ci=1,-- -, m},

where n; 18 the additive noise. Let a Hilbert space H, with a reproducing kernel
K (x,2'), represent the space of all functions to be approximated by the NN.
Let D be the domain of the functions to be approximated, which is a subset of
the L-dimensional Euclidean space RY. The reproducing kernel K(z,z) is a
bivariate function defined on D x D which satisfies the following two conditions:

1. For any fixed &’ in D | K(z,2') is a function in H.

2. For any function f in H and for any z’ in D, it holds that

(f(z), K(2,2")) = f(), (1)

where the left hand side of eq.(1), represented by the notation (-, ), de-
notes the inner product in H.

In the theory of Hilbert space, arguments are developed by regarding a function
as a point in that space. Thus, things such as ’value of a function at a point’



cannot be discussed under the general framework of Hilbert space. However, if
the Hilbert space has a reproducing kernel, then it is possible to deal with the
value of a function at a point. Indeed, if we define functions ;(x) as

i) = K(x, ;) : 1 < i <m, (2)

then, the value of f at a sample point «; is expressed in Hilbert space language
as the inner product of f and ; as

fl@i) = (f, ). (3)

Let {y;}2, and {n;}72, form the elements of the m-dimensional vectors
y") and n(™) | respectively. Once the training set {z;}7, is fixed, we can
introduce an operator A,, such that

Yy = A, f + nl™. (4)

The operator A,,, called the sampling operator, becomes a linear operator even
when we are concerned with nonlinear neural networks. It is expressed by using
the Schatten product! as
m
Am226i®1/%, (5)
i=1
where {e;}72, is the so-called natural basis > in R™. Now, the learning problem
can be reformulated as an inverse problem (See Fig.1) of obtaining an operator
X, which provides an optimal approximation f,, of the true function f from
the noisy sample values y("™):

The generalization ability of the NN, which corresponds to the closeness of
the original function f and the approximated function f,,, can be measured
using various criterion. In this work, we will restrict ourselves to the Averaged
Projection criterion, which will be discussed in the next section. Here, X, 1s
referred to as the learning operator. Results on obtaining the optimal X, for a
given sampling scheme, both as a batch as well as incremental procedure, will
be reviewed in Section 3.2.

In the active learning problem, we have the task of selecting the optimal
training data, which is analogous to deciding on the optimal sampling operator
A,,, under this framework.

3 Optimization criterion for training data
selection
As a measure of deciding the usefulness of the training data as well as for

obtaining an optimal approximation using the selected training data, we make
use of the Averaged Projection criterion, described in the next subsection.

! The Schatten product denoted by (. ® .) is defined by (e; ® E)f = (f,¥i)ei.
2 The vector e; is the m-dimensional vector consisting of zero elements except the element
7 equal to 1.



Figure 1: NN learning as an inverse problem

3.1 Averaged Projection criterion

The Averaged Projection optimization corresponds to finding an optimal sam-
pling operator A,, and learning operator X,, such that it minimizes the func-
tional

min T[], (7)
where
(0) — o 7(2) . (1)
JyplAm] = min Jy p[Xm] under the constraint min Ty plXm], (8)
T X = Bl XmAnf — fI, ()
TSR] = Bl X ™% (10)

ngg in the functional corresponds to optimizing the generalization ability of the
g2

approximated function while J, 5 corresponds to reducing the effect of noise
by reducing the noise variance.

3.2 Optimal learning operator for given sampling
scheme

Methods of obtaining the optimal learning operators X, for a given sampling
scheme, i.e. for fixed A,,, have already been obtained based on [3]. This
corresponds to minimizing Jj(fg under the constraint of minimizing ngg. Here,
we provide both the batch and incremental versions of this solution, a result

which we will use in optimization of the functional of eq.(7).

3.2.1 Batch solution

Let R represent the correlation operator of the function ensemble, i.e., R =
E¢(f ® f) and @y, represent the correlation matrix of the noise vectors, i.e.,



Qm = En(n(m) @ n(m)). These are apriori information about the learning
problem that we assume to possess. Let } be the Moore-Penrose generalized
inverse.

Lemma 3.1 [3] A learning operator XT(nAP) which satisfies the Averaged Pro-
gection criterion is given as

XAP) = RIVIRTAL UL + V(I — UnU}), (11)
where Yy, 1s an arbitrary operator from R™ to H, and

Un = AmRAS + Q. (12)
Vi RTASUY A R7. (13)

3.2.2  Incremental solution

The batch solution provided in the previous section can be computed in an
incremental manner using the learning results of the previous stage and the
newly added training data. The batch and the incremental solutions result
in exactly the same optimal learning operator X,, after the m iterations. We
define a few notations used for this purpose here.

1

T, = AnR* (14)

T = > (e @) (15)
Smi1 = R¥Pn (16)
Fm1 = Pyr,))¢m+1 (17)
byt = Omg1 — T Ul smpa (18)
gmi1 = Ep(nppint™) (19)
smt1 = Tm@mt1 + gmtt (20)
Tm+1l = Eﬂ(nrzn-l—l) (21)
Oy = Nomirll? + Tmrr — (UL sy, smyn) (22)

Lemma 3.2 By using a prior learning operator and new training data, a pos-
terior learning operator satisfying Averaged Projection criterion can be obtained
as follows.

Xy(nAf;) = (X,(HAP) —Cmat1 ®U7Tnsm+1 +U71;LTmV7IL€m+1) Ty +Cm+1 ®€£::r11) .(23)
where (41 18 defined as follows.

(a) When a1 > 0 and ¢pq1 & R(T)), then

R% ¢;m+1

Cm+1 = = .
|6mtal?



(b) When am41 > 0 and ¢pmy1 € R(T)), then

RV
Omt1 + Emt1, VnTzme)

Cm+1 = (25)

For the remaining conditions, it can be shown that the new training data is
redundant from the learning problem perspective and hence, need not be used
for training.

4 Active learning

Active learning involves using the apriori information available about the learn-
ing problem and devising a sampling scheme to achieve good learning results
with limited training data. We will look at the active learning problem from
two separate but interrelated objectives. We will first devise a scheme for select-
ing m training data (batch operation) which will concentrate on improving the
generalization ability of the NN by selecting data which extends our projection
approximation space in the direction with higher function ensemble probability.
Then, in addition to using these m data, we incrementally select the next set
of data so as to reduce the noise variance. The second stage of operations is
proved to maintain the generalization capability while reducing the effect of
additive noise, resulting in a net improvement in the approximation results.
Details of each of the stages are provided in the next sections.

4.1 Training data selection for optimal generalization

In this section, we propose a training data selection scheme which selects m
data points in a batch operation to optimize the generalization ability, i.e.,
minimizes the functional

min Jyo[Ap] = min || XS A £ — £ (26)

m

This corresponds to a modified version of the functional of eq.(7) without in-

. . . . . L AP) . .
cluding the noise variance minimization criterion. Here, Xr(n ) is the optimal

learning operator for a given sampling scheme derived in Section 3.2.1.
4.1.1  Conditions for optimizing generalization capability
Solving the functional of eq.(26),
Juldn] = BIXG Anf = S
= Etr{(X\ A - D(f o HXGD A — )"}
f

= r{(XSP A, — DRXAD A, — 1)}
= tr(XP AL RAL XD — X AP A R — RAL XD + R).(27)



For a learning operator XT(nAP) satisfying the Averaged Projection criterion, it
can be shown that the following relation holds.

XAP) A, RAY, = RAY,. (28)
Using the relation of eq.(28) in eq.(27), we have

Jio[Am] = {tr(R) — tr( X\ A R)}. (29)

Since, R is a fixed apriori information, we can now consider optimizing an
equivalent optimization criterion Jyi.

min Jio[Am] = Ia}ixjn[Am], (30)
where
Jll[Am] = t?“(X,(nAP)AmR)~ (31)

Based on [3], it is known that3

AP I _ pi _ pi

XAPIALRT =R P asy = BT Pre7y)- (32)
Using this relation in eq.(31),

Ji1[Am] = tr(R? Prips R%) = (Prers), R). (33)

From now on, we will represent the orthogonal projection onto R(T},) as P
without referring to the subspace of projection. Let K = dim(R(T},)) denote
the dimension of the projection space. Using the property of the projection
operator P, namely, PP* = P and tr(PP*) = K, we can convert the variational
maximization problem of eq.(33) to a Lagrange maximization problem without
constraints :

Ji1[P] = (PR, P)+ 2Re(C, P*P — P) + A[ir(P*P) — K], (34)

where C' and A are the Lagrange multiplier operator and multiplier, respectively.
The maximization of the above functional can be done based on the following
lemmas.

Lemma 4.1 [8] The functional represented by eq.(34) is maximized only if
PR = RP. (35)
Lemma 4.2 [8§] PR = RP if and only if
RR(R?A%) C R(RTAL). (36)

Lemma 4.3 [8] RR(RZA5,) C R(R3AL) if and only if R(R?AL) is a

Karhunen-Loéve subspace of the kernel R.

3 Pg refers to the orthogonal projection onto a subspace S.



Lemmas 4.1, 4.2 and 4.3 mean that when the relation PR = RP holds, the
subspace R(R%A;‘n_l_l) is spanned by the eigenfunctions of R. Let A, be the
n-th eigenvalue of the correlation operator R arranged in decreasing order and
©n be the corresponding eigenfunction, i.e.,

Then, P can be represented, due to Lemma 4.3, as

P=3 (¢m, ©Pm,)- (38)

n=1

where {m,, : 1 < n < K} is a set of indices. Hence, our problem has been
reduced to that of obtaining a set of eigenfunctions {¢,,, : 1 < n < K} which
maximizes eq.(33). Since the functional being maximized, J11[P], is given as

Jll[P]:(P,R), (39)
from eq.(38), we have,

K K

Jll[P]:(RaP):Z(RSDmnaSDmn):Z/\mn~ (40)

n=1 n=1

Since A, are arranged in decreasing order, eq.(33) is maximized if and only if
we take

{m, 1<n<K}={\,:1<n<K} (41)

Based on the above analysis, we can write a theorem summarizing the necessary
and sufficient condition for selecting the optimal training set, which is analogous
to choosing the sampling operator A,,.

Theorem 4.1 The necessary and sufficient condition for the optimization of
the functional for optimal training data selection to mazximize generalization
capability, represented by eq.(33), is that R(R%A;‘n) is the subspace spanned
by L{on}5_, where K = dim(R(R2 A%)) and g, are the eigenfuctions corre-
sponding to the K largest eigenvalues A, of the correlation operator R.

4.1.2  An dlustrative artificial ezample

Let us consider learning in a Hilbert space H spanned by the functions {sin 6z,
sin 10z, sin 152}, Let the correlation operator R and the noise correlation
matrix Q2 be given as shown in Table 1-(1). The function to be learned, f =
9sin 6z+4sin 10z +sin 15z, is shown by a solid line in Fig.2. At first we consider
selecting two training data from the optimal generalization perspective. For
comparison, we look at two sampling schemes (a) and (b) as shown in Table

1-(2). The eigenvalues and eigenfunctions of R in vector representation?® are

4 A vector (a b c)T denotes a function a sin6z + bsin 10z + c¢sin 15z.



Table 1: Learning conditions and results : sampling for optimal generalization

(1) Correlation operators and their eigen decompositions
| Eigenvalue | Eigenfunction® |

0 Q—(lo) NT=9 [eP=00 0
1 BN MT=4 [P =01 0
MI=1 [ =00 )t

=

I
o o w©
o o

(2) Sampling scheme (a) and (b)
| Optimal scheme (a) | Non-optimal scheme (b) |
D=1 pl=(—059 0 07 | =2 ¢P=0 0 —1)7
z =0 —087 0T [#V=2, ¢P=(071 071 —038)7
[ lr-rPP=391 | 1S = 721 = 60.74

IERSE]

n=

given in Table 1-(1). In Fig.2, the learning result due to sampling scheme
(a) is shown by a dashed line (fz(a)) while the result due to sampling scheme

(b) is represented by a dotted line (fz(b)). The comparison of the normed
generalization error is shown in the bottom half of Table 1-(2). The space
spanned by the sampling functions of scheme (a), i.e., E(d)ga) , 1/);(1)) forms a K-
L subspace of R and it is equivalent to the space spanned by the eigenfunctions
corresponding to the two largest eigenvalues of R. On the other hand, the space
spanned by the sampling functions of scheme (b), i.e., £(1/)§b), 1/)9), does not
form a K-L subspace of R. Based on Theorem 4.1, we predict that sampling
scheme (a) will provide a better generalization result, a fact that is supported
by the results of the simulation (refer Fig.2 and Table 1-(2)).

Figure 2: Learning from the generalization perspective: results using optimal
(dashed) and non-optimal (dotted) training sets.



4.2 Training data selection for noise variance reduction

In this section, we focus on building upon the results of the previous section
and devising a scheme for incrementally finding what training data to add to
minimize noise variance of the learned function.

4.2.1  Conditions for mazimal noise variance reduction

The criterion to be minimized incrementally for reducing the noise variance at
each data selection stage can be written as

leiJrﬂ Joo[Tm+1], (42)
where
oo = En|| XS nm D)2 — B, || X (AP nm) 2, (43)

By using the incremental solution for XT(nA_I_Pl) from Lemma 3.2, Jyg can be

evaluated as follows.

(a) When a1 > 0 and ¢pp1 € R(T}), then

L7 2
Bo = Bnlnma = (0 UL TV g fLEZ2me D
lpmrll*
z O (44)
(b) When a1 > 0 and ¢mp1 € R(17,), then
T = IR Vil s |I°
20 = n
Wttt + (Emt1, Vimbmatr)
< 0 (45)

Since the case (a) always results in an increase of the noise variance (as is
evident from the sign of eq.(44)), the training data which minimizes eq.(45) is
the one which should be chosen for noise variance reduction.

In the case where the noise variance of the new training data is always
constant and the noise on the new training data is not correlated with the noise
on all training data sampled so far, that is, 7,41 1s a constant and ¢m,41 = 0,
eq.(45) can be reduced to a simple form as

aala ] = - e ) (46)
where

B, = Q%X&AP)*X&AP)Q%’ (47)

Umyl = Q%X&AP)WmH. (48)



Table 2: Learning conditions and results : sampling for noise variance reduction

(a)

(1) Eigenvalues and eigenvectors of matrix B,

| Eigenvalue | Eigenvector |
B — Qi x@ x@gi — (289 0 AP =289 | o7 = (-1 0)T
2 T w22 2 2 0 1.33 /\(23) =1.33 SD(ZB) — (0 _ l)T

(2) Sampling scheme (c) and (d)

| Optimal scheme (c) | Non-optimal scheme (d) |
c T c d T d
=% w=0 07 ei'=5, W= 7
9= (=059 0 0)7 W= —087 0)T
| noise variance reduction= —2.89 | noise variance reduction= —1.33 |

By using the condition 7,41 > 0, we have

Jzo[l‘ +1] > _ (Bmum+1a um+1) )

(um+1 5 um+1) (49)
This form is known as Rayleigh’s quotient. The minimum value of eq.(49)
is —A1, where A; is the maximum eigenvalue of B,,. Eq.(49) is minimized if
Umt1 = € 1, where ¢ is the eigenvector corresponding to A1 and ¢ is an
non-zero scalar. Thus, when 7,41 = 0, eq.(46) is minimized if ;11 satisfies
the condition

Um+1 = Q%Xr(nAP)*ﬂ)m+l =C¥1. (50)

In this case, the minimum value of eq.(46) is —A;.

4.2.2  Noise variance reduction in the llustrative example

We continue with the artificial learning problem considered in Section 4.1.2
and assume that we have completed training with the two optimal training
data (x(la),yga)) and (x(za),yga)) based on the optimal sampling scheme (a).
Now, we consider the problem of selecting an additional training data with
the view of reducing noise variance. We can compute Béa) corresponding to
eq.(47) for the sampling scheme (a) as shown in Table 2-(1). We assume that
qs and 73, corresponding to eqs.(19) and (21), are both zero and independent
of sampling location. The eigenvalues and eigenvectors of Béa) are shown in
Table 2-(1). As a candidate for the next training data x3, we consider two
locations corresponding to schemes (c) and (d), as shown in Table 2-(2). The
value of ug corresponding to eq.(48) computed for each sampling scheme is
shown alongside. Based on our results from Section 4.2, the sampling scheme
(c) should provide a greater noise variance reduction since the vector ugc) is
a scalar multiple of the eigenvector corresponding to the largest eigenvalue of



Figure 3: Learning from the noise variance reduction perspective: results using
optimal (dashed) and non-optimal (dotted) training sets.

Béa) (refer eq.(50)), while scheme (d) does not satisfy this condition. The plot
of the learned results in Fig.3 and the noise variance reduction shown in the
bottom half of Table 2-(2) substantiate this prediction.

5 Empirical evaluations

We have demonstrated the mechanism by which the active learning scheme
shows selectivity in the training data location through a simple artificial ex-
ample in the previous section. Here, we demonstrate that the technique scales
well with the complexity of the problem by considering a learning problem in
high dimensional spaces (infinite dimensional original function space).

We consider learning a function within the band-limited Paley-Wiener space

H = L({Lsinc(L2z —i)}52_ ), whose reproducing kernel is written as

Kz, 2) = ¢i(x) = ;—Osinc(;—o(l‘ —x4)). (51)

To monitor the learning results, we use a decomposition of the generalization
error into the noise and the signal component:

Jgen = EfEn||fm_f||2 (52)
= Efl|XmAnf = I + Enl| Xmnt™]? (53)
= r{R—XpAnR} + r{XnQnX)} (54)

signal component J, noise component J,

At first, we look at a task of learning using a set of 40 training points. The
result of learning clearly shows that we achieve a better generalization error
with the data points selected on the basis of our active learning scheme (see
Fig.5) as compared to the results achieved using passive uniform sampling(refer
Fig.4). The generalization error for the active sampling works out to be Jye,, =
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learned function -

training data
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Figure 4: Sampling for improving generalization (Non-optimal)

Optimal sampling A\

original function
learned function -
training data

8

Figure 5: Sampling for improving generalization (Optimal)

Js + Jp = 3.18 + 2.36 = 5.54 as compared to Jye, = J; + J, = 12.374+2.17 =

14.90 for the passive uniform sampling.

In the second part of the evaluation, we consider selecting incrementally, an

additional 10 data points with an aim of reducing the noise variance while using
the 40 optimal training data selected from the first stage. Again, the plots of
the learned results, shown in Figs.6 and 7, and analysis of the generalization
error (Jgen = Js + Jn = 3.18 + 1.89 = 5.07 for the optimal case as against
Jgen = Js+Jn = 3.1842.05 = 5.23 for the non-optimal case) shows that there
is an effective reduction in the noise variance component while maintaining the
generalization ability when we use the active sampling scheme devised here.
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Figure 6: Sampling for noise variance reduction (Non-optimal)

3.5
Optimal sampling ’\+ original function
3 /ﬁ \ - = = - learned function -
\ -+ training data
o additional training data

Figure 7: Sampling for noise variance reduction (Optimal)

6 Conclusion

The generalization ability of a learning system in a noisy environment is a
delicate balance on how well it can select data to enlarge the approximation
space and at the same time, reduce noise variance by redundant sampling. The
framework provided here provides an effective mechanism of incorporating apri-
ori information about the function ensemble and the noise correlation matrix
to select training data in accordance with the goals of optimal generalization
and noise variance reduction.
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