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Learning in Neural Networks

Learning in feedforward neural networks with L-dimensional input,

N hidden units and scalar output in the presence of noise.

imput output
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Networks with the existence of input to hidden layer weights and sigmoidal
activation functions in the hidden units can be expressed as special cases

of the general activation function w;(z):
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Learning as a function approximation problem

original function f

/

Y3

learned function f3

I 9 T3

yi = flag) +n;
Noisy training data: {x;, y; }q

Learning Problem

@ Todesign an optimal sampling scheme for
selecting training data.

@ To construct a NN using the above training
data such that it becomes the best approximation
to a desired function f(x) based on some criterion.
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Active Learning : What and Why ?

Non-optimal sampling Optimal sampling
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original function
—— |earned function

e Learning results are generally highly dependent on the

location of the training data.

4

e Improve generalization ability through selection of op-

timal training sets.

e S50, how do we select good training data 7

4

e DBy utilizing apriori information such as

1. Apriori knowledge of the function ensemble correlation

2. Apriori knowledge of the noise characteristics
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Inverse problem formalization of NN learning

H : Set of all functions to be approximated by the NN

R™ : Sampled space of dimension m.

H
A R"
m
X
hn
Sampling: 3" = | : = A, f+n™
Ym

Learning: f, = X,, (m)

- Mathematical Formulations
A, = g) e; ® 1; (Sampling operator)
Pi(x) = Z[:(l(x, z;)  (Sampling function)

K(z,z;) : Reproducing kernel of H
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Generalization Error Measure &it's S/N decomposition

Jgen = ErEu|lfu = fIP
= EfHXmAmf — f||2_|_ EnH)(mn(m)H2

signal component .J noise component .J;,

Averaged Projection Criterion  (for fixed sampling scheme)

min Jn|[ X n] under the constraint min Js[ X
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Optimal X for a fixed sampling scheme

Apriori Knowledge
R=E/{f®f) (function ensemble correlation)

Q= E,(n") @ nlm) (noise correlation)

Batch Solution

XWUP) = RaviRzA* U 1Y, (1, — U, Ul

Symbol Definitions 1

Un = A,RA, 4+ Q. Y, : R™ — H is an arbitrary operator
V, = REAZUNA,R?

Incremental Solution

XyszAJrPl) = X&AP)F;X;@ + (Cnt1 @ 1)

1 = 657717:—11) - F7*71(U7];15m+1 + UrTnTmVszmH)

3y
Gt = zﬁéﬁ}ﬁfﬁw W; jm € R(T)
|Gt ll?
Symbol Definitions 2
T, = ApR? T = S (el @ el
Omp1 = Ritpnp Omr1 = Py (1,)Pm1
Emy1 = ¢m+1—Tf;zUrTnSm+1 dm+1 = En(nm+1n(m))
Smt1 = Lm@Omt1 + Gmt1 Tm+l = En(n?nﬂ)

M4l = ||¢m—|—1||2 + Tl — (UTTnSm—I—la Sm—l—l)
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Optimal training data selection : Active learning

@ Batch selection of
‘m’ optimal data points from
optimal generalization perspective

|

win B[ XG0 AL — [P

L1,

@ Incremental selection of
additional training data to
reduce noise variance

|

(B, | X7 B, X )

oBJ ECTIVE)
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Active learning for optimal generalization (Objective 1)

— @Optimal training data selection (ObD —~

The selected training data is optimal if and
only if it satisfies the condition that R(R%A;’;l) is
the subspace spanned by L({y,}2 ) where K =

dzm(R(R%A;’;%)) and ¢, are the eigenfuctions corre-
sponding to the K largest eigenvalues ), of the

correlation operator K.

e Select {x;}", such that

R(R%A;’;l) is the K -dimensional maximal variance

subspace of R, where K = dzm(R(R%A;’;l))

|

CHRMA) = LH ) M > Ao > o
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Empirical evaluations through artificial example —Part 1

H = L{sin 6z, sin 10z, sin 15z}
f =9sin6x 4+ 4sin 10z + sin 15z

Eigenvalue | Eigenfunction

90 0
10 AP =9 [ =(1 0 0)
R=[040| Q= R (R _ T

NP =1 e =00 1)

Non-optimal training data Optimal training data

15

15

101

(2, )
10 10
150 0.5 1 15 2 B 0.5 1 15 2
d 2 t 2
2" = fI? = 60.74 |7 = f|[* = 3.91
Non-optimal scheme Optimal scheme
1 R 1 R
LURF L) # LU V) LUR ) = LHe V)
0.71 —0.59
x(lrand) _ % : ¢§rand) _ —0.71 x(lopt) _ % : ¢§0pt) _ 0
—0.38 0
0 0
R M =1l = | 087
—1 0
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Active learning for noise variance reduction (Objective 2)

—— Change in noise variance with new training data ——

Tiity = BallX0E 0P = B | X

(8) R¥yp1 € R(RQA )

Jéw)rl > () -+ (Increase in noise variance)
(b) Ry € R(RIAL)

Jéﬁ)rl <0 -+ (decrease in noise variance)

Hence, we should select training data
satisfying condition (b) for Objective 2.

In case (b)

)

EAXSE Air f = FIP = EAIXSD AL = FIP=0

|

Maintains generalization ability

while reducing noise variance
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Active learning for noise variance reduction (Objective 2)

Using case (b), the optimal mext’ training location which causes
maximuim noise variance reduction i1s determined as follows:

When - - -

¢ the noise variance of new training data is positive and

e noise on new data is uncorrelated to data sampled so far,

Then - - -

— @Optimal training data selection (ObD —

Select the next training data z,,,; to satisfy

¢m+1 = C- P1

where ¢, 1s the eigenfunction corresponding to
the largest eigenvalue of X&AP)QmX&AP)*
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Empirical evaluations through artificial example — Part 2

i |
(0 )

Use training data selected under the

optimal generalization sampling scheme

To select the third location for optimal noise variance reduction- - -

15

101

o

-101

-15

By = Xy, x ("

Non-optimal training data

Eigenvalue | Eigenfunction

AP =289 P =1 0 0)

A =133 =0 1 0)7

Optimal training data

15

101

-101

(25"

y(opt))

3 I3

0.5 1 1.5 2

noise variance reduction=-1.33

Non-optimal scheme

U3 # ¢l

:L‘3 =

0
—0.87
0

(rand) ¢(rand)

3 =

ol

-15

0.5 1 1.5

noise variance reduction=-2.89

Optimal scheme
Uy = pl?
—0.59
ngPt) — % : ¢§0Pt) — 0
0
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Comparison of learning results for Optimal / Non—optimal
sampling schemes in high dimensional learning problems

- Experimental Parameters N

10 10
H = L{{—sinc(—z —1)}2 )
s s
Band-limited Paley-Wiener space

K(x7 ZL'@) — zpl(x) = ;—Osinc(;—o(x — ZE@))

Reproducing kernel of the function space H

—— Experimental error monitor parameters ——

Joen = BB fu — fI°
= Bl XnAnf = fIP+ Bl Xpn™ ]

signal component J;  noise component J,

Gen.Error (Jy,) = signal bias error (.J;) + noise variance (.J,,)
. J

- Experimental Objective ~

e Sclect 40 training data to optimally reduce the signal bias error.

e Use the previously selected data and additionally, select 10 more

data points to maximally reduce noise variance.
- J
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Batch selection for optimal generalization I

Learning with uniformly sampled(non-optimal) training data

Uniform sampling 7 original function

learned function —

-+ training data

Il Il Il Il Il Il
o) 2 a 6 8 10 12

Gen. Error = J, + J,, = 12.73 + 2.17 =14.90

Learning with optimally sampled training data

Optimal sampling / original function

learned function —

-+ training data

Il Il Il Il Il Il
o) 2 a 6 8 10 12

Gen. Error = J, + J,, = 3.18 + 2.36 =5.54
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Incremental selection for noise variance reduction I

Learning with uniformly sampled(non-optimal) additional data

Uniform sampling / original function

learned function —

training data

0+

additional training data

Il Il Il Il Il Il
o) 2 a 6 8 10 12

Gen. Error = J, + J, = 3.18 4+ 2.05 =5.23

Learning with optimally sampled additional data

Optimal sampling / original function

learned function —
training data
additional training data

Il Il Il Il Il Il
o) 2 a 6 8 10 12

Gen. Error = J, + J, = 3.18 + 1.89 =5.07
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Conclusion

The generalization ability of a learning system in a noisy environment
is a delicate balance on how well it can select data to enlarge the ap-
proximation space and at the same time, reduce noise variance
by redundant sampling.

The framework described here provides an effective mechanism of in-
corporating apriori information about the function ensemble and

the noise correlation matrix to select training data in accordance with

the goals of optimal generalization and noise variance reduction.




