Convex Relaxations of Latent Variable Training

Yuhong Guo and Dale Schuurmans

読む人:栗原 賢一 (東工大)

注意: NIPSでのタイトルはConvex Relaxations of EM となっ

ている。現在、web で落とせる pdf のタイトルは Convex

Relaxations of Latent Variable Training

NIPS2007読む会; 1/18, 2007

- 隠れ変数のあるモデルのパラメータ推定を relaxation + semi-definite programming (SDP) で解きます。
- けっこう広いクラスの問題に適用できます。
- ただし、(#学習データ by #学習データ)の
 行列の SDP を解くので、学習データは100
 個程度で、いっぱいいっぱい。

論文の味わいどころ

- convex relaxation はそんなに簡単なことで はないと、まず釘をさす (by Lemma 1)
- 不幸な Lemma 1 を解決する方法を提案
- 後はひたすら式変形 (退屈)

背景 - 確率モデルとパラメータ推定

- 例: 正規分布 N(x; m, σ)
- データ: x1, ..., xn
- 最尤推定では、m と σ が一意に
 closed form で求まる。
- optimization 不要。

背景 - 確率モデルとパラメータ推定

・例:二つの混合正規分布

- N(x; m1, σ1) と N(x; m2, σ2)
- $p(x) = \pi N(x; m1, \sigma1) + (1-\pi) N(x; m2, \sigma2)$
- データ: x1, ..., xn, **隠れ変数: y1, ..., yn**
 - 各データ xi は、どちらかの正規分布から生成された
- 最尤推定では、m1,m2,σ1,σ2,π が closed form で求まらない。
- optimization 必要。
 - e.g. expectation maximization (EM) で対数尤度を最大化
 - local optima

ページ 5 /17

NIPS2007読む会; I/18, 2007

目的

- 隠れ変数のあるモデルでパラメータ推定
- 目的関数
 - min_y min_w Σ_i log P(xi, yi | w)
 - ・観測 X=(x1,...,xn), 隠れ変数 Y=(y1,...,yn)
 - c.f. EM $tarrow min_w \Sigma_i \log P(xi | w)$
- convex relaxation したい

残念な補題 (Lemmal)

- 準備
 - ・例:二つの混合正規分布
 - $p(x) = \pi N(x; m1, \sigma1) + (1-\pi) N(x; m2, \sigma2)$
 - 1 と 2 というラベルに意味はなく、交換しても 分布は同じ
- Lemma 1
 - もし対数尤度が convex でラベルの交換に対して不変であれば、最適な P(Y|X) は uniform

M=YY^Tで最適化

- min_y min_w Σ_i log P(xi, yi | w)
- の代わりに
- min_M min_w Σ_i log P(xi, yi | w)
 - where $M = YY^T$

Convex Relaxation 準備

• 例題

- p(Yi | Фi, W) = exp(Фi W Yi^T A(W,Фi))
 - Φi = [0, ..., 1, ..., 0]

• 正規化; $A(W, \Phi_{i:}) = \log \sum_{a} \exp (\Phi_{i:} W \mathbf{1}_{a})$

• 目的関数

$$\min_{W} \left(\sum_{i} A(W, \Phi_{i:}) \right) - \operatorname{tr}(\Phi W Y^{\top}) + \frac{\alpha}{2} \operatorname{tr}(W^{\top} W)$$

ページ 9 /17

Convex Relaxation 準備

$$\min_{W} \left(\sum_{i} A(W, \Phi_{i:}) \right) - \operatorname{tr}(\Phi W Y^{\top}) + \frac{\alpha}{2} \operatorname{tr}(W^{\top} W)$$

$$A(W, \Phi_{i:}) = \log \sum_{a} \exp(\Phi_{i:} W \mathbf{1}_{a}).$$

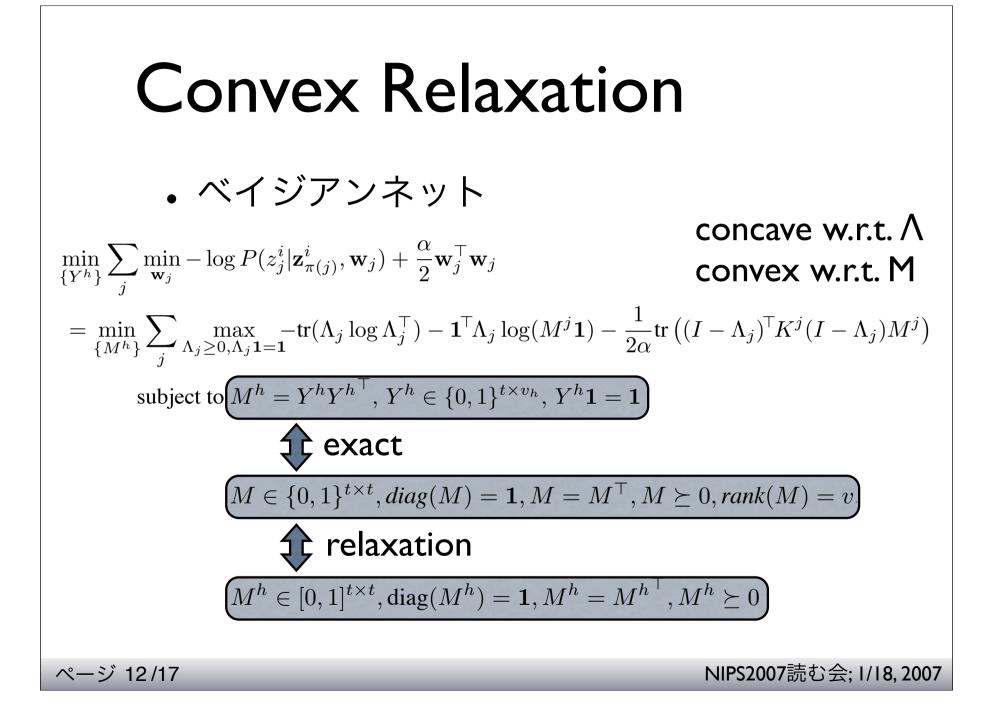
$$\mathbf{A}(W, \Phi_{i:}) = \log \sum_{a} \exp(\Phi_{i:} W \mathbf{1}_{a}).$$

Convex Relaxation 準備

$$\min_{B} \left(\sum_{i} A(B, \Phi_{i:}) - tr(KBM) + \frac{1}{2\alpha} tr(B^{\top}KBM) \right)$$

subject to $B \le I, B\mathbf{1} = 0$
 $M = YY^{\top}$ $W = \frac{1}{\alpha} \Phi^{\top}BY$ $K = \Phi \Phi^{\top}$
 $\mathbf{I} = \mathbf{I} - \mathbf{I} \cdot \mathbf{$

ページ 11/17



- 観測データは、連続でも離散でもよい
- 隠れ変数は離散
- ベイジアンネット
 - マルコフランダムフィールドは駄目っ ぽい

・ベイジアンネットで実験・学習データのサイズは100

Bayesian	Fully Supervised		Viterbi EM		Convex EM	
networks	Train	Test	Train	Test	Train	Test
Synth1	$7.23 \pm .06$	$7.90{\scriptstyle~\pm.04}$	$11.29{\scriptstyle~\pm.44}$	$11.73 \pm .38$	$8.96{\scriptstyle~\pm.24}$	$9.16{\scriptstyle~\pm.21}$
Synth2	$4.24{\scriptstyle~\pm.04}$	$4.50{\scriptstyle~\pm.03}$	$6.02 \pm .20$	$6.41 \pm .23$	$5.27{\scriptstyle~\pm.18}$	$5.55 \pm .19$
Synth3	$4.93 \pm .02$	$5.32 \pm .05$	$7.81 \pm .35$	$8.18 \pm .33$	$6.23 \pm .18$	$6.41 \pm .14$
Diabetes	$5.23{\scriptstyle~\pm.04}$	$5.53{\scriptstyle~\pm.04}$	$6.70{\scriptstyle~\pm.27}$	$7.07 \pm .23$	$6.51 \pm .35$	$6.50 \pm .28$
Pima	$5.07{\scriptstyle~\pm.03}$	$5.32 \pm .03$	$6.74{\scriptstyle~\pm.34}$	$6.93{\scriptstyle~\pm.21}$	$5.81 \pm .07$	$6.03 \pm .09$
Cancer	$2.18 \pm .05$	$2.31 \pm .02$	$3.90{\scriptstyle~\pm.31}$	$3.94 \pm .29$	$2.98 \pm .19$	$3.06 \pm .16$
Alarm	$10.23 \pm .16$	$12.30 \pm .06$	$11.94 \pm .32$	$13.75 \pm .17$	$11.74 \pm .25$	$13.62 \pm .20$
Asian	$2.17 \pm .05$	$2.33 \pm .02$	$2.21 \pm .05$	$2.36 \pm .03$	$2.70{\scriptstyle~\pm.14}$	$2.78 \pm .12$

average loss \pm standard deviation

ページ 14/17

NIPS2007読む会; I/18, 2007

まとめ

- Y で relaxation するのはよくない(ラベ ルのパーミュテーション)
- $M = YY^T$ で relaxation する
- log p(Y|X) や log p(X,Y) を convex
 relaxation することができることを示した
- 実験により、Viterbi EM よりはよいことがわかった

ページ 15/17

補足; A の消去

$$\min_{W} \left(\sum_{i} A(W, \Phi_{i:}) \right) - \operatorname{tr}(\Phi W Y^{\top}) + \frac{\alpha}{2} \operatorname{tr}(W^{\top} W)$$
where $A(W, \Phi_{i:}) = \log \sum_{a} \exp(\Phi_{i:} W \mathbf{1}_{a})$.
where
 $A(w, \Phi_{i:}) = \max_{\Theta_{i:}} tr(\Theta_{i:}^{T} \Phi_{i:} W) - A^{*}(\Theta_{i:})$
where
 $A^{*}(\Theta_{i:}) = \sup_{w, \Phi_{i:}} tr(\Theta_{i:}^{T} \Phi_{i:} W) - A(W, \Phi_{i:}) = \Theta_{i:} \log \Theta_{i:}^{T}$
 $where$

補足; A の消去

$$\min_{W} \left(\sum_{i} A(W, \Phi_{i:}) \right) - tr(\Phi W Y^{\top}) + \frac{\alpha}{2} tr(W^{\top} W)$$
where $A(W, \Phi_{i:}) = \log \sum_{a} \exp(\Phi_{i:} W \mathbf{1}_{a})$
where $A(W, \Phi_{i:}) = \log \sum_{a} \exp(\Phi_{i:} W \mathbf{1}_{a})$
Fenchel conjugate of A で A を消去

$$\max_{W} - tr(\Theta \log \Theta^{\top}) - tr((Y - \Theta)^{\top} \Phi W) + \frac{\alpha}{2} tr(W^{\top} W)$$
subject to $\Theta \ge 0, \Theta \mathbf{1} = \mathbf{1}$
max $-tr(\Theta \log \Theta^{\top}) - \frac{1}{2\alpha} tr((Y - \Theta)^{\top} \Phi \Phi^{\top}(Y - \Theta))$
subject to $\Theta \ge 0, \Theta \mathbf{1} = \mathbf{1}$
 $\pi - \mathfrak{V} 17/17$