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概要
•隠れ変数のあるモデルのパラメータ推定を 
relaxation + semi-definite programming 
(SDP) で解きます。

•けっこう広いクラスの問題に適用できます。
•ただし、(#学習データ by #学習データ) の
行列の SDP を解くので、学習データは100
個程度で、いっぱいいっぱい。
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論文の味わいどころ
•convex relaxation はそんなに簡単なことで
はないと、まず釘をさす (by Lemma 1)

• 不幸な Lemma 1 を解決する方法を提案
•後はひたすら式変形 (退屈)
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背景 - 確率モデルとパラメータ推定

•例: 正規分布 N(x; m, σ)• データ: x1, ..., xn• 最尤推定では、m と σ が一意に 
closed form で求まる。
• optimization 不要。
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背景 - 確率モデルとパラメータ推定

• 例: 二つの混合正規分布
• N(x; m1, σ1) と N(x; m2, σ2) 
• p(x) = π N(x; m1, σ1) + (1-π) N(x; m2, σ2) 
• データ: x1, ..., xn,  隠れ変数: y1, ..., yn
• 各データ xi は、どちらかの正規分布から生成された
• 最尤推定では、m1,m2,σ1,σ2,π が closed form で求まらな
い。
• optimization 必要。
• e.g. expectation maximization (EM) で対数尤度を最大化
• local optima
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目的
•隠れ変数のあるモデルでパラメータ推定
•目的関数
•min_y min_w - Σi log P(xi, yi | w)
• 観測 X=(x1,...,xn), 隠れ変数 Y=(y1,...,yn)
• c.f. EM は min_w - Σi log P(xi | w)
• convex relaxation したい
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残念な補題 (Lemma1)

• 準備•例: 二つの混合正規分布• p(x) = π N(x; m1, σ1) + (1-π) N(x; m2, σ2) • 1 と 2 というラベルに意味はなく、交換しても
分布は同じ

• Lemma 1• もし対数尤度が convex でラベルの交換に対し
て不変であれば、最適な P(Y|X) は uniform
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M=YYTで最適化
•min_y min_w - Σi log P(xi, yi | w)
• の代わりに
•min_M min_w - Σi log P(xi, yi | w)
• where M=YYT
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Convex Relaxation 準備
•例題
• p(Yi | Φi, W) = exp(Φi W YiT - A(W,Φi))
• Φi = [0, ..., 1, ..., 0]
• Yi = [0, ..., 1, ..., 0]
• 正規化;
• 目的関数

A particularly convenient property of directed models is that the complete data likelihood decom-
poses into an indepdendent sum of local loglikelihoods

∑
i log P (zi|w) =

∑
j

∑
i w!

j φj(zi
j , zi

π(j)) − A(wj , zi
π(j)) (2)

Thus the problem of solving for a maximum likelihood set of parameters, given complete training
data, amounts to solving a set of independent log-linear regression problems, one for each variable
Zj . To simplify notation, consider one of the log-linear regression problems in (2) and drop the
subscript j. Then, using a matrix notation we can rewrite the jth local optimization problem as

min
W

( ∑
i A(W,Φi:)

)
− tr(ΦWY !)

where W ∈ IRc×v, Φ ∈ {0, 1}t×c, and Y ∈ {0, 1}t×v , such that t is the number of training
examples, v is the number of possible values for the child variable, c is the number of possible
configurations for the parent variables, and tr is the matrix trace. To explain this notation, note that
Y and Φ are indicator matrices that have a single 1 in each row, where Y indicates the value of
the child variable, and Φ indicates the specific configuration of the parent values, respectively; i.e.
Y 1 = 1 and Φ1 = 1, where 1 denotes the vector of all 1s. (This matrix notation greatly streamlines
the presentation below.) We also use the notation Φi: to denote the ith row vector in Φ. Here, the
log normalization factor is given byA(W,Φi:) = log

∑
a exp (Φi:W1a), where 1a denotes a sparse

vector with a single 1 in position a.

Below, we will consider a regularized form of the objective, and thereby work with the maximum a
posteriori (MAP) form of the problem

min
W

( ∑
i A(W,Φi:)

)
− tr(ΦWY !) +

α

2
tr(W!W ) (3)

This provides the core estimation principle at the heart of Bayesian network parameter learning.
However, for our purposes it suffers from a major drawback: (3) is not expressed in terms of equiv-
alence relations between the variable values. Rather it is expressed in terms of direct indicators of
specific variable values in specific examples—which will lead to a trivial outcome if we attempt
any convex relaxation. Instead, we require a fundamental reformulation of (3) to remove the value
dependence and replace it with a dependence only on equivalence relationships.

4 Log-linear Regression on Equivalence Relations

The first step in reformulating (3) in terms of equivalence relations is to derive its dual.

Lemma 2 An equivalent optimization problem to (3) is

max
Θ

−tr(Θ log Θ!) − 1
2α

tr
(
(Y − Θ)!ΦΦ!(Y − Θ)

)
subject to Θ ≥ 0, Θ1 = 1 (4)

Proof: The proof follows a standard derivation, which we sketch; see e.g. [14]. First, by considering
the Fenchel conjugate of A it can be shown that

A(W,Φi:) = max
Θi:

tr(Θ!
i: Φi:W ) − Θi: log Θ!

i: subject to Θi: ≥ 0, Θi:1 = 1

Substituting this in (3) and then invoking the strong minimax property [1] allows one to show that
(3) is equivalent to

max
Θ

min
W

−tr(Θ log Θ!) − tr((Y − Θ)!ΦW ) +
α

2
tr(W!W ) subject to Θ ≥ 0, Θ1 = 1

Finally, the inner minimization can be solved by settingW = 1
αΦ!(Y − Θ), yielding (4).

Interestingly, deriving the dual has already achieved part of the desired result: the parent configura-
tions now only enter the problem through the kernel matrixK = ΦΦ!. For Bayesian networks this
kernel matrix is in fact an equivalence relation between parent configurations: Φ is a 0-1 indicator
matrix with a single 1 in each row, implying that Kij = 1 iff Φi: = Φj:, and Kij = 0 otherwise.
But more importantly, K can be re-expressed as a function of the individual equivalence relations
on each of the parent variables. Let Y p ∈ {0, 1}t×vp indicate the value of a parent variable Zp
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Convex Relaxation 準備
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for each training example. That is, Y p
i: is a 1 × vp sparse row vector with a single 1 indicating the

value of variable Zp in example i. Then Mp = Y pY p! defines an equivalence relation over the
assignments to variable Zp, since Mp

ij = 1 if Y p
i: = Y p

j: and Mp
ij = 0 otherwise. It is not hard

to see that the equivalence relation over complete parent configuraions, K = ΦΦ!, is equal to the
compnentwise (Hadamard) product of the individual equivalence relations for each parent variable.
That is,K = ΦΦ! = M1◦M2◦ · · ·◦Mp, sinceKij = 1 iffM1

ij = 1 andM2
ij = 1 and ... Mp

ij = 1.

Unfortunately, the dual problem (4) is still expressed in terms of the indicator matrix Y over child
variable values, which is still not acceptable. We still need to reformulate (4) in terms of the equiv-
alence relation matrix M = Y Y !. Consider an alternative dual parameterization Ω ∈ IRt×t such
that Ω ≥ 0, Ω1 = 1, and ΩY = Θ. (Note that Θ ∈ IRt×v, for v < t, and therefore Ω is larger than
Θ. Also note that as long as every child value occurs at least once in the training set, Y has full rank
v. If not, then the child variable effectively has fewer values, and we could simply reduce Y until
it becomes full rank again without affecting the objective (3).) Therefore, since Y is full rank, for
any Θ, some Ω must exist that achieves ΩY = Θ. Then we can relate the primal parameters to this
larger set of dual parameters by the relationW = 1

αΦ!(I −Ω)Y . (Even though Ω is larger than Θ,
they can only express the same realizable set of parametersW .) To simplify notation, letB = I−Ω
and note the relationW = 1

αΦ!BY . If we reparameterize the original problem using this relation,
then it is possible to show that an equivalent optimization problem to (3) is given by

min
B

( ∑
i A(B,Φi:

)
− tr(KBM) +

1
2α
tr(B!KBM) subject to B ≤ I, B1 = 0 (5)

where K = ΦΦ! and M = Y Y ! are equivalence relations on the parent configurations and
child values respectively. The formulation (5) is now almost completely expressed in terms of
equivalence relations over the data, except for one subtle problem: the log normalization factor
A(B,Φi:) = log

∑
a exp

(
1
αΦi:Φ!BY 1a

)
still directly depends on the label indicator matrix Y .

Our key technical lemma is that this log normalization factor can be re-expressed to depend on the
equivalence relation matrixM alone.

Lemma 3 A(B,Φi:) = log
∑

j exp
(

1
αKi:BM:j − log 1!M:j

)

Proof: The main observation is that an equivalence relation over value indicators, M = Y Y !,
consists of columns copied from Y . That is, for all j, M:j = Y:a for some a corresponding to the
child value in example j. Let y(j) denote the child value in example j and let βi: = 1

αKi:B. Then∑
a exp

(
1
αΦi:Φ!BY 1a

)
=

∑
a exp(βi:Y:a) =

∑
a

∑
j:y(j)=a

1
|{":y(")=a}| exp(βi:M:j)

=
∑

j
1

|{":y(")=y(j)}| exp(βi:M:j) =
∑

j
1

1!M:j
exp(βi:M:j) =

∑
j exp(βi:M:j − log 1!M:j)

Using Lemma 3 one can show that the dual problem to (5) is given by the following.

Theorem 1 An equivalent optimization problem to (3) is

max
Λ≥0,Λ1=1

−tr(Λ log Λ!) − 1!Λ log(M1) − 1
2α

tr((I − Λ)!K(I − Λ)M) (6)

where K = M1 ◦ · · · ◦ Mp for parent variables Z1, ..., Zp.

Proof: This follows the same derivation as Lemma 2, modified by taking into account the extra
term introduced by Lemma 3. First, considering the Fenchel conjugate of A, it can be shown that

A(B,Φi:) = max
Λi:≥0,Λi:1=1

1
α

Ki:BMΛ!
i: − Λi: log Λ!

i: − Λi: log(M1)

Substituting this in (5) and then invoking the strong minimax property [1] allows one to show that
(5) is equivalent to

max
Λ≥0,Λ1=1

min
B≤I,B1=0

−tr(Λ log Λ!) − 1!Λ log(M1) − tr((I − Λ)!KBM) +
1
2α
tr(B!KBM)

Finally, the inner minimization on B can be solved by setting B = I − Λ, yielding (6).

This gives our key result: the log-linear regression (3) is equivalent to (6), which is now expressed
strictly in terms of equivalence relations over the parent configurations and child values. That is, the
value indicators, Φ and Y , have been successfully eliminated from the formuation. Given a solution
Λ∗ to (6), the optimal model parametersW ∗ for (3) can be recovered viaW ∗ = !

αΦ!(I − Λ∗)Y .
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Convex Relaxation

• ベイジアンネット
5 Convex Relaxation of Joint EM

The equivalence relation form of log-linear regression can be used to derive useful relaxations of
EM variants for directed models. In particular, by exploting Theorem 1, we can now re-express
the regularized form of the joint EM objective (1) strictly in terms of equivalence relations over the
hidden variable values
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where h ranges over the hidden variables, and Kj = M j1 ◦ · · · ◦ M jp for the parent variables
Zj1 , ..., Zjp of Zj .

Note that (8) is an exact reformulation of the joint EM objective (7); no relaxation has yet been
introduced. Another nice property of the objective in (8) is that is it concave in each Λj and convex

in each Mh individually (a maximum of convex functions is convex [2]). Therefore, (8) appears
as though it might admit an efficient algorithmic solution. However, one difficulty in solving the
resulting optimization problem is the constraints. Although the constraints imposed in (9) are not
convex, there is a natural convex relaxation suggested by the following.

Lemma 4 (9) is equivalent to: M ∈ {0, 1}t×t, diag(M) = 1,M = M!,M $ 0, rank(M) = v.

A natural convex relaxation of (9) can therefore be obtained by relaxing the discreteness constraint
and dropping the nonconvex rank constraint, yielding

Mh ∈ [0, 1]t×t, diag(Mh) = 1,Mh = Mh!
,Mh $ 0 (10)

Optimizing the exact objective in (8) subject to the relaxed convex constraints (10) provides the
foundation for our approach to convexifying EM. Note that since (8) and (10) are expressed solely
in terms of equivalence relations, and do not depend on the specific values of hidden variables in
any way, this formulation is not subject to the triviality result of Lemma 1.

However, there are still some details left to consider. First, if there is only a single hidden variable
then (8) is convex with respect to the single matrix variable Mh. This result immediately provides
a convex EM training algorithm for various applications, such as for mixture models for example
(see the note regarding continuous random variables below). Second, if there are multiple hidden
variables that are separated from each other (none are neighbors, nor share a common child) then the
formulation (8) remains convex and can be directly applied. On the other hand, if hidden variables
are connected in any way, either by sharing a parent-child relationship or having a common child,
then (8) is no longer jointly convex because the trace term is no longer linear in the matrix variables
{Mh}. In this case, we can restore convexity by further relaxing the problem: To illustrate, if there
are multiple hidden parents Zp1 , ..., Zp! for a given child, then the combined equivalence relation
Mp1 ◦ · · · ◦ Mp! is a Hadamard product of the individual matrices. A convex formulation can be

recovered by introducing an auxiliary matrix variable M̃ to replaceMp1 ◦· · ·◦Mp! in (8) and adding

the set of linear constraints M̃ij ≤ Mp
ij for p ∈ {p1, ..., p"}, M̃ij ≥ Mp1

ij + · · · + Mp!
ij − " + 1

to approximate the componentwise ’and’. A similar relaxation can also be applied when a child is
hidden concurrently with hidden parent variables.

Continuous Variables The formulation in (8) can be applied to directed models with continuous
random variables, provided that all hidden variables remain discrete. If every continuous random
variable is observed, then the subproblems on these variables can be kept in their natural formula-
tions, and hence still solved. This extension is sufficient to allow the formulation to handle Gaussian
mixture models, for example. Unfortunately, the techniques developed in this paper do not apply to
the situation where there are continuous hidden variables.

Recovering the Model Parameters Once the relaxed equivalence relation matrices {M h} have
been obtained, the parameters of they underlying probability model need to be recovered. At an
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適用範囲
•観測データは、連続でも離散でもよい•隠れ変数は離散•ベイジアンネット•マルコフランダムフィールドは駄目っ
ぽい
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実験
•ベイジアンネットで実験•学習データのサイズは100

Bayesian Fully Supervised Viterbi EM Convex EM
networks Train Test Train Test Train Test

Synth1 7.23 ±.06 7.90 ±.04 11.29 ±.44 11.73 ±.38 8.96 ±.24 9.16 ±.21

Synth2 4.24 ±.04 4.50 ±.03 6.02 ±.20 6.41 ±.23 5.27 ±.18 5.55 ±.19

Synth3 4.93 ±.02 5.32 ±.05 7.81 ±.35 8.18 ±.33 6.23 ±.18 6.41 ±.14

Diabetes 5.23 ±.04 5.53 ±.04 6.70 ±.27 7.07 ±.23 6.51 ±.35 6.50 ±.28

Pima 5.07 ±.03 5.32 ±.03 6.74 ±.34 6.93 ±.21 5.81 ±.07 6.03 ±.09

Cancer 2.18 ±.05 2.31 ±.02 3.90 ±.31 3.94 ±.29 2.98 ±.19 3.06 ±.16

Alarm 10.23 ±.16 12.30 ±.06 11.94 ±.32 13.75 ±.17 11.74 ±.25 13.62 ±.20

Asian 2.17 ±.05 2.33 ±.02 2.21 ±.05 2.36 ±.03 2.70 ±.14 2.78 ±.12

Table 1: Results on synthetic and real-world Bayesian networks: average loss ± standard deviation

optimal solution to (8), one not only obtains {Mh}, but also the associated set of dual parameters
{Λj}. Therefore, we can recover the primal parameters Wj from the dual parameters Λj by using

the relationshipWj = 1
αΦ!

j (I−Λj)Y j established above, which only requires availability of a label

assignment matrix Y j . For observed variables, Y j is known, and therefore the model parameters
can be immediately recovered. For hidden variables, we first need to compute a rank vh factorization

of Mh. Let V = UΣ1/2 where U and Σ are the top vh eigenvector and eigenvalue matrices of the

centered matrixHMhH , such thatH = I − 1
t 11

!. One simple idea to recover Ŷh from V is to run
k-means on the rows of V and construct the indicator matrix. A more elegant approach would be to

use a randomized rounding scheme [6], which also produces a deterministic Ŷh, but provides some

guarantees about how well ŶhŶ !
h approximates Mh. Note however that V is an approximation

of Y h where the row vectors have been re-centered on the origin in a rotated coordinate system.
Therefore, a simpler approach is just to map the rows of V back onto the simplex by translating the
mean back to the simplex center and rotation the coordinates back into the positive orthant.

6 Experimental Results

An important question to ask is whether the relaxed, convex objective (8) is in fact over-relaxed, and
whether important structure in the original marginal likelihood objective has been lost as a result. To
investigate this question, we conducted a set of experiments to evaluate our convex approach com-
pared to the standard Viterbi (i.e. joint) EM algorithm, and to supervised training on fully observed
data. Our experiments are conducted using both synthetic Bayesian networks and real networks,
while measuring the trained models by their logloss produced on the fully observed training data
and testing data. All the results reported in this paper are averages over 10 times repeats. The test
size for the experiments is 1000, the training size is 100 without specification. For a fair comparison,
we used 10 random restarts for Viterbi EM to help avoid poor local optima.

For the synthetic experiments, we constructed three Bayesian networks: (1) Bayesian network 1
(Synth1) is a three layer network with 9 variables, where the two nodes in the middle layer are
picked as hidden variables; (2) Bayesian network 2 (Synth2) is a network with 6 variables and
6 edges, where a node with 2 parents and 2 children is picked as hidden variable; (3) Bayesian
network 3 (Synth3) is a Naive Bayes model with 7 variables, where the parent node is selected as
the hidden variable. The parameters are generated in a discriminative way to produce models with
apparent causal relations between the connected nodes. We performed experiments on these three
synthetic networks using varying training sizes: 50, 100 and 150. Due to space limits, we only
report the results for training size 100 in Table 1. Besides these three synthetic Bayesian networks,
we also ran experiments using real UCI data, where we used Naive Bayes as the model structure,
and set the class variables to be hidden. The middle two rows of the Table 1 show the results on two
UCI data sets.

Here we can see that the convex relaxation was successful at preserving structure in the EM ob-
jective, and in fact, generally performed much better than the Viterbi EM algorithm, particularly
in the case (Synth1) where there was two hidden variables. Not surprisingly, supervised training
on the complete data performed better than the EM methods, but generally demonstrated a larger
gap between training and test losses than the EM methods. Similar results were obtained for both
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まとめ
•Y で relaxation するのはよくない(ラベ
ルのパーミュテーション)
• M = YYT で relaxation する• log p(Y|X) や log p(X,Y) を convex 
relaxation することができることを示し
た
•実験により、Viterbi EM よりはよいこ
とがわかった
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補足; A の消去

A particularly convenient property of directed models is that the complete data likelihood decom-
poses into an indepdendent sum of local loglikelihoods

∑
i log P (zi|w) =

∑
j

∑
i w!

j φj(zi
j , zi

π(j)) − A(wj , zi
π(j)) (2)

Thus the problem of solving for a maximum likelihood set of parameters, given complete training
data, amounts to solving a set of independent log-linear regression problems, one for each variable
Zj . To simplify notation, consider one of the log-linear regression problems in (2) and drop the
subscript j. Then, using a matrix notation we can rewrite the jth local optimization problem as

min
W

( ∑
i A(W,Φi:)

)
− tr(ΦWY !)

where W ∈ IRc×v, Φ ∈ {0, 1}t×c, and Y ∈ {0, 1}t×v , such that t is the number of training
examples, v is the number of possible values for the child variable, c is the number of possible
configurations for the parent variables, and tr is the matrix trace. To explain this notation, note that
Y and Φ are indicator matrices that have a single 1 in each row, where Y indicates the value of
the child variable, and Φ indicates the specific configuration of the parent values, respectively; i.e.
Y 1 = 1 and Φ1 = 1, where 1 denotes the vector of all 1s. (This matrix notation greatly streamlines
the presentation below.) We also use the notation Φi: to denote the ith row vector in Φ. Here, the
log normalization factor is given byA(W,Φi:) = log

∑
a exp (Φi:W1a), where 1a denotes a sparse

vector with a single 1 in position a.

Below, we will consider a regularized form of the objective, and thereby work with the maximum a
posteriori (MAP) form of the problem

min
W

( ∑
i A(W,Φi:)

)
− tr(ΦWY !) +

α

2
tr(W!W ) (3)

This provides the core estimation principle at the heart of Bayesian network parameter learning.
However, for our purposes it suffers from a major drawback: (3) is not expressed in terms of equiv-
alence relations between the variable values. Rather it is expressed in terms of direct indicators of
specific variable values in specific examples—which will lead to a trivial outcome if we attempt
any convex relaxation. Instead, we require a fundamental reformulation of (3) to remove the value
dependence and replace it with a dependence only on equivalence relationships.

4 Log-linear Regression on Equivalence Relations

The first step in reformulating (3) in terms of equivalence relations is to derive its dual.

Lemma 2 An equivalent optimization problem to (3) is

max
Θ

−tr(Θ log Θ!) − 1
2α

tr
(
(Y − Θ)!ΦΦ!(Y − Θ)

)
subject to Θ ≥ 0, Θ1 = 1 (4)

Proof: The proof follows a standard derivation, which we sketch; see e.g. [14]. First, by considering
the Fenchel conjugate of A it can be shown that

A(W,Φi:) = max
Θi:

tr(Θ!
i: Φi:W ) − Θi: log Θ!

i: subject to Θi: ≥ 0, Θi:1 = 1

Substituting this in (3) and then invoking the strong minimax property [1] allows one to show that
(3) is equivalent to

max
Θ

min
W

−tr(Θ log Θ!) − tr((Y − Θ)!ΦW ) +
α

2
tr(W!W ) subject to Θ ≥ 0, Θ1 = 1

Finally, the inner minimization can be solved by settingW = 1
αΦ!(Y − Θ), yielding (4).

Interestingly, deriving the dual has already achieved part of the desired result: the parent configura-
tions now only enter the problem through the kernel matrixK = ΦΦ!. For Bayesian networks this
kernel matrix is in fact an equivalence relation between parent configurations: Φ is a 0-1 indicator
matrix with a single 1 in each row, implying that Kij = 1 iff Φi: = Φj:, and Kij = 0 otherwise.
But more importantly, K can be re-expressed as a function of the individual equivalence relations
on each of the parent variables. Let Y p ∈ {0, 1}t×vp indicate the value of a parent variable Zp

4
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specific variable values in specific examples—which will lead to a trivial outcome if we attempt
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4 Log-linear Regression on Equivalence Relations

The first step in reformulating (3) in terms of equivalence relations is to derive its dual.

Lemma 2 An equivalent optimization problem to (3) is

max
Θ

−tr(Θ log Θ!) − 1
2α

tr
(
(Y − Θ)!ΦΦ!(Y − Θ)

)
subject to Θ ≥ 0, Θ1 = 1 (4)

Proof: The proof follows a standard derivation, which we sketch; see e.g. [14]. First, by considering
the Fenchel conjugate of A it can be shown that
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補足; A の消去
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