
ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented
Sampler for DP Mixture Models

Percy Liang, Michael I. Jordan and Ben Taskar

読む人: 栗原 賢一 (東工大)

1

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

背景と目的
• 背景
• Dirichlet process mixtures の Gibbs sampler

は遅い
• Gibbs sampler と Metropolis-Hastings sampler

のトレードオフ
• 目的
• 速いsamplerを提案する

2

2

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

Dirichlet process mixtures の inference

• p(C|x) を推定したい
• x : data, C : assignment

• p(C|x)∝p(x|C)p(C)

• MCMC で p(C|x) を計算
• C ～ p(C|x)

3

1 2 3

x

C={c1,c2}

c1={1,2} c2={3}

3

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

- の割当てのサンプル1

4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

2 3

C¬1
old

- の割当てのサンプル1

4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

2 3

C¬1
old

- の割当てのサンプル1
p(Cold |x,C¬1

old)

p(Cnew1|x,C¬1
old)

{

1 2 3

1 2 3

1 3 2

p(Cnew2|x,C¬1
old)

local
move

4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

2 3

C¬1
old

- の割当てのサンプル1
p(Cold |x,C¬1

old)

p(Cnew1|x,C¬1
old)

{

1 2 3

1 2 3

1 3 2

p(Cnew2|x,C¬1
old)

local
move

from q(Cnew|Cold)1 2 3propose Cnew

global
move

4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

min
{

1,
p(Cnew,x)q(Cold|Cnew)
p(Cold,x)q(Cnew|Cold)

}
- accept Cnew with probability
- or reject Cnew

2 3

C¬1
old

- の割当てのサンプル1
p(Cold |x,C¬1

old)

p(Cnew1|x,C¬1
old)

{

1 2 3

1 2 3

1 3 2

p(Cnew2|x,C¬1
old)

local
move

from q(Cnew|Cold)1 2 3propose Cnew

global
move

4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

• Gibbs sampler

• Metropolis-Hastings sampler

MCMC samplers

4

Cold 1 2 3

1 2 3

Cold

min
{

1,
p(Cnew,x)q(Cold|Cnew)
p(Cold,x)q(Cnew|Cold)

}
- accept Cnew with probability
- or reject Cnew

2 3

C¬1
old

- の割当てのサンプル1
p(Cold |x,C¬1

old)

p(Cnew1|x,C¬1
old)

{

1 2 3

1 2 3

1 3 2

p(Cnew2|x,C¬1
old)

local
move

from q(Cnew|Cold)1 2 3propose Cnew

global
move

せっかく提案したCnewを捨てる
4

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

global move の必要性
• #clusters=3 になるような local move は起
こりにくい

5

!40 !20 0 20 40
!35

!30

!25

!20

!15

!10

!5

0

5

10

!40 !20 0 20 40
!35

!30

!25

!20

!15

!10

!5

0

5

10

#clusters=3#clusters=2

Gibbs sampler
- 青cluster

- 緑cluster

- new cluster

5

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

MCMC samplers

• Gibbs sampler : reject の無駄なし
• p(Cnew|x,C¬i

old) で Cnew を提案
• 正規化項:

p(x,C¬i
old) = p(i∈cnew,x,C¬i

old) + !k p(i∈ck,x,C¬i
old) の計

算が必用。global な遷移は、この計算が大変。
• Metropolis-Hastings : reject の無駄あり

• q(Cnew|Cold) が p(Cnew|x,Cold) に近ければ accept す
る確率が増える

6

6

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

提案手法

• permutation-augmented samplerを提案
• permutation ! と C を交互にサンプルする

1. Gibbs sampler

• global move を Gibbs samper で実現
• dynamic programming で正規化項を計算する

2. 高速な Metropolis-Hastings sampler

• Gibbs sampler を改良し高速な Metropolis-

Hastings を提案

7

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

7

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

"(C)={(1,2,3), (1,3,2), (2,3,1), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

"(C)={(1,2,3), (1,3,2), (2,3,1), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

8

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

"(C)={(1,2,3), (1,3,2), (2,3,1), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

8

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

dynamic programming for p(x,!)

• C ～ p(C|x,!) に p(x,!) が必用

9

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

p(!|C)は一様
min

(
1,

p(Cnew,x)q(Cold|Cnew)
p(Cold,x)q(Cnew|Cold)

)
min

(
1,

p(Cnew,x)q(Cold|Cnew)
p(Cold,x)q(Cnew|Cold)

)

9

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

dynamic programming for p(x,!)

• g(r,K) for r=1...n, K=1...n を計算する
• O(n3) の時間計算量

10

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

10

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

11

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

"(C)={(1,2,3), (1,3,2), (2,3,1), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

11

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Gibbs sampler

11

1 2 3C=

permutation !"e.g.

"(C)={(1,2,3), (2,1,3), (3,1,2), (3,2,1)}

"(C)={(1,2,3), (1,3,2), (2,3,1), (3,2,1)}

permutation !

for t = 1...
" !(t) ～ p(!|x,C(t))=p(!|C(t))=uniform

" C(t+1) ～ p(C|x,! (t))

end

--- p(x,!) is done in O(n3) by dynamic programming

--- O(n)

permutation-augmented Gibbs sampler

2 1 3C=

11

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

• O(n3) is too expensive : C(t+1) ～ p(C|x,! (t))

• q(C|x,!) # p(C|x,!) を使って、Metropolis-

Hastings

• うまく近似できれば、reject を減らせる
• O(n2) な q(C|x,!) が存在する

12

12

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

13

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

A Permutation-Augmented Sampler for DP Mixture Models

After computing all the entries in the dynamic pro-
gramming table g(r, K), we can sample a clustering by
following the recurrence. Starting at r = n, we select a
size m for the last cluster with probability proportional
to its contribution g(r−m,K−1)B({πr−m+1, . . . ,πr})
to the summation, then with r = n−m, and so on.

It is interesting to note that a clustering is sampled
with probability proportional to p(C,π,x), which in-
cludes p(π | C). This fact has an intuitive inter-
pretation. In particular, the p(π | C) factor down-
weights clusterings with either very few or very many
clusters—exactly those that are consistent with a large
number of permutations. These clusterings would be
oversampled without the p(π | C) weighting.3

It is also worth noting that the augmentation method
that we have described can be applied to a broad class
of models beyond DP mixtures. Our approach applies
as long as the prior decomposes into factors A and
B as in Equation 4. In particular, the approach can
be used for finite mixture models and mixture models
based on Pitman-Yor process (Pitman & Yor, 1997).

The basic permutation-augmentation that we have
introduced in this section requires O(n2) space and
O(n3) time to sample a clustering. While the benefit
obtained for this computation is a potentially large
move, the computational burden is overly large to
make this basic approach feasible in general. We thus
turn to the discussion of several optimizations that we
have developed that make the approach practical for
large data sets.

3.2. Optimization 1: Metropolis-Hastings

The time and space complexities for computing p(π,x)
arise because of the need to sum over all possible clus-
ter sizes. The culprit is the 1

|C|! factor in A(|C|). If
we replace |C|! with β|C|, then we would be able to
move this factor, along with α|C|

0 , into B(c). Doing so
results in an approximate joint distribution:

qβ(C,π,x) =
1

AF(α0, n)︸ ︷︷ ︸
def
= A′

∏

c∈C

p(xc)α0

|c|β︸ ︷︷ ︸
def
= B′(c)

. (5)

Note that A′ does not depend on C, and the depen-
dence on C factors according to the clusters. This
allows us to compute qβ(π,x) using a much simpler
dynamic program, one which requires only O(n) space

3Note that in the setting of Bayesian network structural
inference, a similar weighting is needed to guard against a
bias towards structures with fewer edges. Friedman and
Koller (2000) omit this weighting, resulting in a bias.

and O(n2) time:

g′(r) =
r∑

m=1

g′(r −m)B′({πr−m+1, . . . ,πr}). (6)

We can sample from the approximate distribution
qβ(C | π,x) rather than our desired distribution p(C |
π,x). This introduces a bias, but we can correct for
this bias using Metropolis-Hastings. Specifically, we
accept a new clustering Cnew ∼ qβ with probability

min
{

1,
p(Cnew,π,x)qβ(Cold,π,x)
p(Cold,π,x)qβ(Cnew,π,x)

}
.

The only issue now is to choose β so that p and qβ are
not very far apart. Our solution is to Taylor expand
the log of the factorial function around the current
number of clusters: log |Cnew|! ! log Γ(|Cold| + 1) +
Ψ(|Cold| + 1)(|Cnew| − |Cold|), where Ψ(x) = Γ′(x)

Γ(x) is
the digamma function, the derivative of log Γ(x). Let-
ting β = expΨ(|Cold|), we have |Cnew|! ! aβ|Cnew|+1,
where a is a constant which can be absorbed into A′.
The approximation is good when we expect the distri-
bution of |C| to be concentrated around the current
number of clusters.

While this approach yields a significant reduction in
complexity, it is important to note that the adaptation
of β yields a sampler that does not necessarily have
the correct stationary distribution. In practice, we
adapt β only during the burn-in phase of the Markov
chain. Thereafter, we fix β to the average value of |C|
observed during burn-in.

3.3. Optimization 2: Using a Beam

The Metropolis-Hastings optimization yields a sam-
pling algorithm that has a complexity of O(n2) time
per sample. We now develop a second optimization
that improves the running time to roughly O(n). This
optimization is motivated by two empirical observa-
tions. First, the sum for computing g′(r) (Equation 6)
is dominated by only a few terms (most of the time
just a single term). Second, the vector of terms in
the summation for computing g′(r) (which we call the
summation profile) and that of g′(r + 1) are usually
very similar. Figure 2 shows the summation profile for
several values of r.

The first observation suggests representing the sum-
mation profile of g′(r) by a small subset of cluster sizes
Mr ⊂ {1, . . . , r} sufficient to capture at least 1 − ε of
the full sum. Then we are guaranteed to lose at most
a 1− (1− ε)n fraction of g′(n).

A Permutation-Augmented Sampler for DP Mixture Models

bility of the data x is given as follows:

p(x | C) =
∏

c∈C

∫ ∏

i∈c

F (xi; θ)G0(dθ).

︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a Permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . ,πn), where xπi is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
[π ∈ Π(C)]
|Π(C)| =

[π ∈ Π(C)]
|C|!

∏
c∈C |c|! , (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a Clustering using Dynamic
Programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C,π,x) =
α|C|

0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏

c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏

c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏

c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . ,πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.

|C|! を #|C| で近似
A Permutation-Augmented Sampler for DP Mixture Models

After computing all the entries in the dynamic pro-
gramming table g(r, K), we can sample a clustering by
following the recurrence. Starting at r = n, we select a
size m for the last cluster with probability proportional
to its contribution g(r−m,K−1)B({πr−m+1, . . . ,πr})
to the summation, then with r = n−m, and so on.

It is interesting to note that a clustering is sampled
with probability proportional to p(C,π,x), which in-
cludes p(π | C). This fact has an intuitive inter-
pretation. In particular, the p(π | C) factor down-
weights clusterings with either very few or very many
clusters—exactly those that are consistent with a large
number of permutations. These clusterings would be
oversampled without the p(π | C) weighting.3

It is also worth noting that the augmentation method
that we have described can be applied to a broad class
of models beyond DP mixtures. Our approach applies
as long as the prior decomposes into factors A and
B as in Equation 4. In particular, the approach can
be used for finite mixture models and mixture models
based on Pitman-Yor process (Pitman & Yor, 1997).

The basic permutation-augmentation that we have
introduced in this section requires O(n2) space and
O(n3) time to sample a clustering. While the benefit
obtained for this computation is a potentially large
move, the computational burden is overly large to
make this basic approach feasible in general. We thus
turn to the discussion of several optimizations that we
have developed that make the approach practical for
large data sets.

3.2. Optimization 1: Metropolis-Hastings

The time and space complexities for computing p(π,x)
arise because of the need to sum over all possible clus-
ter sizes. The culprit is the 1

|C|! factor in A(|C|). If
we replace |C|! with β|C|, then we would be able to
move this factor, along with α|C|

0 , into B(c). Doing so
results in an approximate joint distribution:

qβ(C,π,x) =
1

AF(α0, n)︸ ︷︷ ︸
def
= A′

∏

c∈C

p(xc)α0

|c|β︸ ︷︷ ︸
def
= B′(c)

. (5)

Note that A′ does not depend on C, and the depen-
dence on C factors according to the clusters. This
allows us to compute qβ(π,x) using a much simpler
dynamic program, one which requires only O(n) space

3Note that in the setting of Bayesian network structural
inference, a similar weighting is needed to guard against a
bias towards structures with fewer edges. Friedman and
Koller (2000) omit this weighting, resulting in a bias.

and O(n2) time:

g′(r) =
r∑

m=1

g′(r −m)B′({πr−m+1, . . . ,πr}). (6)

We can sample from the approximate distribution
qβ(C | π,x) rather than our desired distribution p(C |
π,x). This introduces a bias, but we can correct for
this bias using Metropolis-Hastings. Specifically, we
accept a new clustering Cnew ∼ qβ with probability

min
{

1,
p(Cnew,π,x)qβ(Cold,π,x)
p(Cold,π,x)qβ(Cnew,π,x)

}
.

The only issue now is to choose β so that p and qβ are
not very far apart. Our solution is to Taylor expand
the log of the factorial function around the current
number of clusters: log |Cnew|! ! log Γ(|Cold| + 1) +
Ψ(|Cold| + 1)(|Cnew| − |Cold|), where Ψ(x) = Γ′(x)

Γ(x) is
the digamma function, the derivative of log Γ(x). Let-
ting β = expΨ(|Cold|), we have |Cnew|! ! aβ|Cnew|+1,
where a is a constant which can be absorbed into A′.
The approximation is good when we expect the distri-
bution of |C| to be concentrated around the current
number of clusters.

While this approach yields a significant reduction in
complexity, it is important to note that the adaptation
of β yields a sampler that does not necessarily have
the correct stationary distribution. In practice, we
adapt β only during the burn-in phase of the Markov
chain. Thereafter, we fix β to the average value of |C|
observed during burn-in.

3.3. Optimization 2: Using a Beam

The Metropolis-Hastings optimization yields a sam-
pling algorithm that has a complexity of O(n2) time
per sample. We now develop a second optimization
that improves the running time to roughly O(n). This
optimization is motivated by two empirical observa-
tions. First, the sum for computing g′(r) (Equation 6)
is dominated by only a few terms (most of the time
just a single term). Second, the vector of terms in
the summation for computing g′(r) (which we call the
summation profile) and that of g′(r + 1) are usually
very similar. Figure 2 shows the summation profile for
several values of r.

The first observation suggests representing the sum-
mation profile of g′(r) by a small subset of cluster sizes
Mr ⊂ {1, . . . , r} sufficient to capture at least 1 − ε of
the full sum. Then we are guaranteed to lose at most
a 1− (1− ε)n fraction of g′(n).

O(n3)

O(n2)

13

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

• さらに beam-search で O(n) に高速化

• 和 !m=1...r は一部の和に支配されている

• 和 !m∈Mr で近似する
• Mr+1 は Mr から構成する
• 1-(1-$)n の精度で g’(r) を近似できる

14

A Permutation-Augmented Sampler for DP Mixture Models

After computing all the entries in the dynamic pro-
gramming table g(r, K), we can sample a clustering by
following the recurrence. Starting at r = n, we select a
size m for the last cluster with probability proportional
to its contribution g(r−m,K−1)B({πr−m+1, . . . ,πr})
to the summation, then with r = n−m, and so on.

It is interesting to note that a clustering is sampled
with probability proportional to p(C,π,x), which in-
cludes p(π | C). This fact has an intuitive inter-
pretation. In particular, the p(π | C) factor down-
weights clusterings with either very few or very many
clusters—exactly those that are consistent with a large
number of permutations. These clusterings would be
oversampled without the p(π | C) weighting.3

It is also worth noting that the augmentation method
that we have described can be applied to a broad class
of models beyond DP mixtures. Our approach applies
as long as the prior decomposes into factors A and
B as in Equation 4. In particular, the approach can
be used for finite mixture models and mixture models
based on Pitman-Yor process (Pitman & Yor, 1997).

The basic permutation-augmentation that we have
introduced in this section requires O(n2) space and
O(n3) time to sample a clustering. While the benefit
obtained for this computation is a potentially large
move, the computational burden is overly large to
make this basic approach feasible in general. We thus
turn to the discussion of several optimizations that we
have developed that make the approach practical for
large data sets.

3.2. Optimization 1: Metropolis-Hastings

The time and space complexities for computing p(π,x)
arise because of the need to sum over all possible clus-
ter sizes. The culprit is the 1

|C|! factor in A(|C|). If
we replace |C|! with β|C|, then we would be able to
move this factor, along with α|C|

0 , into B(c). Doing so
results in an approximate joint distribution:

qβ(C,π,x) =
1

AF(α0, n)︸ ︷︷ ︸
def
= A′

∏

c∈C

p(xc)α0

|c|β︸ ︷︷ ︸
def
= B′(c)

. (5)

Note that A′ does not depend on C, and the depen-
dence on C factors according to the clusters. This
allows us to compute qβ(π,x) using a much simpler
dynamic program, one which requires only O(n) space

3Note that in the setting of Bayesian network structural
inference, a similar weighting is needed to guard against a
bias towards structures with fewer edges. Friedman and
Koller (2000) omit this weighting, resulting in a bias.

and O(n2) time:

g′(r) =
r∑

m=1

g′(r −m)B′({πr−m+1, . . . ,πr}). (6)

We can sample from the approximate distribution
qβ(C | π,x) rather than our desired distribution p(C |
π,x). This introduces a bias, but we can correct for
this bias using Metropolis-Hastings. Specifically, we
accept a new clustering Cnew ∼ qβ with probability

min
{

1,
p(Cnew,π,x)qβ(Cold,π,x)
p(Cold,π,x)qβ(Cnew,π,x)

}
.

The only issue now is to choose β so that p and qβ are
not very far apart. Our solution is to Taylor expand
the log of the factorial function around the current
number of clusters: log |Cnew|! ! log Γ(|Cold| + 1) +
Ψ(|Cold| + 1)(|Cnew| − |Cold|), where Ψ(x) = Γ′(x)

Γ(x) is
the digamma function, the derivative of log Γ(x). Let-
ting β = expΨ(|Cold|), we have |Cnew|! ! aβ|Cnew|+1,
where a is a constant which can be absorbed into A′.
The approximation is good when we expect the distri-
bution of |C| to be concentrated around the current
number of clusters.

While this approach yields a significant reduction in
complexity, it is important to note that the adaptation
of β yields a sampler that does not necessarily have
the correct stationary distribution. In practice, we
adapt β only during the burn-in phase of the Markov
chain. Thereafter, we fix β to the average value of |C|
observed during burn-in.

3.3. Optimization 2: Using a Beam

The Metropolis-Hastings optimization yields a sam-
pling algorithm that has a complexity of O(n2) time
per sample. We now develop a second optimization
that improves the running time to roughly O(n). This
optimization is motivated by two empirical observa-
tions. First, the sum for computing g′(r) (Equation 6)
is dominated by only a few terms (most of the time
just a single term). Second, the vector of terms in
the summation for computing g′(r) (which we call the
summation profile) and that of g′(r + 1) are usually
very similar. Figure 2 shows the summation profile for
several values of r.

The first observation suggests representing the sum-
mation profile of g′(r) by a small subset of cluster sizes
Mr ⊂ {1, . . . , r} sufficient to capture at least 1 − ε of
the full sum. Then we are guaranteed to lose at most
a 1− (1− ε)n fraction of g′(n).

14

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

15

for t = 1...
" !(t) ～ p(!|x,C(t)) =p(!|C(t))=uniform

" C’ ～ q(C|x,! (t))

" if C’ is accepted
" " C (t+1) = C’
$ otherwise
$ $ C (t+1) = C (t)

$ end
end

--- q(C|x,! (t)) is done in O(n) by dynamic programming
$ and beam search

• ここまでのまとめ

--- O(n)

15

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

15

for t = 1...
" !(t) ～ p(!|x,C(t)) =p(!|C(t))=uniform

" C’ ～ q(C|x,! (t))

" if C’ is accepted
" " C (t+1) = C’
$ otherwise
$ $ C (t+1) = C (t)

$ end
end

--- q(C|x,! (t)) is done in O(n) by dynamic programming
$ and beam search

• ここまでのまとめ

--- O(n)

15

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

15

for t = 1...
" !(t) ～ p(!|x,C(t)) =p(!|C(t))=uniform

" C’ ～ q(C|x,! (t))

" if C’ is accepted
" " C (t+1) = C’
$ otherwise
$ $ C (t+1) = C (t)

$ end
end

--- q(C|x,! (t)) is done in O(n) by dynamic programming
$ and beam search

• ここまでのまとめ

--- O(n)

1

2

3

4

(1,2,3,4)と(1,4,2,3)

が同じ確率

15

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

15

for t = 1...
" !(t) ～ p(!|x,C(t)) =p(!|C(t))=uniform

" C’ ～ q(C|x,! (t))

" if C’ is accepted
" " C (t+1) = C’
$ otherwise
$ $ C (t+1) = C (t)

$ end
end

--- q(C|x,! (t)) is done in O(n) by dynamic programming
$ and beam search

• ここまでのまとめ

--- O(n)

1

2

3

4

(1,2,3,4)と(1,4,2,3)

が同じ確率

p(!|x,C(t)) : data-dependent

15

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

data-dependent permutation sampler

• Markov Gibbs Scans

• Random Projections -- biased

16

1

2

3

4

5

7

6

clusterの順番を|C|!からuniformに選ぶ
for each cluster
" 一点uniformに選ぶ
" 次の点を p(xnext|xprev) (?)で選ぶ
end

1

2

3

4

5

7

6

!=(1,3,2,4,5,7,6)

16

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

data-dependent permutation sampler

• Markov Gibbs Scans

• Random Projections -- biased

16

1

2

3

4

5

7

6

clusterの順番を|C|!からuniformに選ぶ
for each cluster
" 一点uniformに選ぶ
" 次の点を p(xnext|xprev) (?)で選ぶ
end

1

2

3

4

5

7

6

!=(1,3,2,4,5,7,6)

16

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

data-dependent permutation sampler

• Markov Gibbs Scans

• Random Projections -- biased

16

1

2

3

4

5

7

6

clusterの順番を|C|!からuniformに選ぶ
for each cluster
" 一点uniformに選ぶ
" 次の点を p(xnext|xprev) (?)で選ぶ
end

1

2

3

4

5

7

6

!=(1,3,2,4,5,7,6)

16

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

permutation-augmented Metropolis-Hastings

17

for t = 1...
" !(t) ～ p(!|x,C(t))

" C’ ～ q(C|x,! (t))

" if C’ is accepted
" " C (t+1) = C’
$ otherwise
$ $ C (t+1) = C (t)

$ end
end

--- q(C|x,! (t)) is done in O(n) by dynamic programming
$ and beam search

• 最終的な提案手法

--- uniform : O(n) or Markov Gibbs scan : O(n2)
$ or random projection (biased) : O(n)

17

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

実験
• permutation-augmented sampler

• burn-in phase : random proj. (biased)

• mixing phase : uniform (unbiased)

• split-merge GIbbs sampler

• permutation + split-merge

18

18

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

実験結果
• burn-in phase

• random proj. :
biased

• faster

• mixing phase

• uniform :
unbiased

• competitive

19

A Permutation-Augmented Sampler for DP Mixture Models

-900000

-850000

-800000

-750000

-700000

-650000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(a) Initialize with 1 cluster

-650000

-645000

-640000

-635000

-630000

-625000

-620000

-615000

-610000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(b) Initialize with 40 clusters

-615000

-614000

-613000

-612000

-611000

 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(c) Initialize with 300 clusters

-800000

-750000

-700000

-650000

-600000

 20 40 60 80 100 120 140

lo
g

 p
ro

b
a

b
ili

ty

seconds

(d) 20 true clusters, 40 dimensions

-850000

-800000

-750000

-700000

-650000

 0 100 200 300 400 500 600

lo
g

 p
ro

b
a

b
ili

ty

seconds

(e) 80 true clusters, 40 dimensions

-900000

-850000

-800000

-750000

-700000

-650000

 0 200 400 600 800 1000 1200

lo
g

 p
ro

b
a

b
ili

ty

seconds

(f) 160 true clusters, 40 dimensions

-800000

-750000

-700000

-650000

-600000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(g) 10 dimensions, 40 true clusters

-850000

-800000

-750000

-700000

-650000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(h) 80 dimensions, 40 true clusters

-1.26e+06

-1.258e+06

-1.256e+06

-1.254e+06

-1.252e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(i) MNIST

-3.65e+06

-3.64e+06

-3.63e+06

-3.62e+06

-3.61e+06

-3.6e+06

-3.59e+06

-3.58e+06

-3.57e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(j) AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(k) MNIST: number of clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(l) MNIST: largest cluster size

Gibbs Gibbs+SplitMerge Gibbs+Perm Gibbs+SplitMerge+Perm

Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.

Liu, J., & Wu, Y. (1999). Parameter expansion for data
augmentation. Journal of the American Statistical As-
sociation, 94, 1264–1274.

Pitman, J. (2002). Combinatorial stochastic processes
(Technical Report 621). Department of Statistics, UC
Berkeley.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25, 855–900.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., & Will-
sky, A. S. (2006). Describing visual scenes using trans-
formed Dirichlet processes. Advances in Neural Infor-
mation Processing Systems (pp. 1297–1304).

Swendsen, R. H., & Wang, J. S. (1987). Nonuniversal criti-
cal dynamics in MC simulations. Physics Review Letters,
58, 86–88.

Tanner, M. A., & Wong, W. H. (1987). The calculation of

posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528–540.

Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hi-
erarchical Dirichlet processes. Journal of the American
Statistical Association, 101, 1566–1581.

West, M. (1995). Hyperparameter estimation in Dirichlet
process mixture models (Technical Report). Duke Uni-
versity.

Xing, E. P., Sharan, R., & Jordan, M. I. (2004). Bayesian
haplotype inference via the Dirichlet process. Interna-
tional Conference on Machine Learning (p. 111).

A Permutation-Augmented Sampler for DP Mixture Models

-900000

-850000

-800000

-750000

-700000

-650000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(a) Initialize with 1 cluster

-650000

-645000

-640000

-635000

-630000

-625000

-620000

-615000

-610000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(b) Initialize with 40 clusters

-615000

-614000

-613000

-612000

-611000

 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(c) Initialize with 300 clusters

-800000

-750000

-700000

-650000

-600000

 20 40 60 80 100 120 140

lo
g

 p
ro

b
a

b
ili

ty

seconds

(d) 20 true clusters, 40 dimensions

-850000

-800000

-750000

-700000

-650000

 0 100 200 300 400 500 600

lo
g

 p
ro

b
a

b
ili

ty

seconds

(e) 80 true clusters, 40 dimensions

-900000

-850000

-800000

-750000

-700000

-650000

 0 200 400 600 800 1000 1200

lo
g

 p
ro

b
a

b
ili

ty

seconds

(f) 160 true clusters, 40 dimensions

-800000

-750000

-700000

-650000

-600000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(g) 10 dimensions, 40 true clusters

-850000

-800000

-750000

-700000

-650000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(h) 80 dimensions, 40 true clusters

-1.26e+06

-1.258e+06

-1.256e+06

-1.254e+06

-1.252e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(i) MNIST

-3.65e+06

-3.64e+06

-3.63e+06

-3.62e+06

-3.61e+06

-3.6e+06

-3.59e+06

-3.58e+06

-3.57e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(j) AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(k) MNIST: number of clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(l) MNIST: largest cluster size

Gibbs Gibbs+SplitMerge Gibbs+Perm Gibbs+SplitMerge+Perm

Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.

Liu, J., & Wu, Y. (1999). Parameter expansion for data
augmentation. Journal of the American Statistical As-
sociation, 94, 1264–1274.

Pitman, J. (2002). Combinatorial stochastic processes
(Technical Report 621). Department of Statistics, UC
Berkeley.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25, 855–900.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., & Will-
sky, A. S. (2006). Describing visual scenes using trans-
formed Dirichlet processes. Advances in Neural Infor-
mation Processing Systems (pp. 1297–1304).

Swendsen, R. H., & Wang, J. S. (1987). Nonuniversal criti-
cal dynamics in MC simulations. Physics Review Letters,
58, 86–88.

Tanner, M. A., & Wong, W. H. (1987). The calculation of

posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528–540.

Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hi-
erarchical Dirichlet processes. Journal of the American
Statistical Association, 101, 1566–1581.

West, M. (1995). Hyperparameter estimation in Dirichlet
process mixture models (Technical Report). Duke Uni-
versity.

Xing, E. P., Sharan, R., & Jordan, M. I. (2004). Bayesian
haplotype inference via the Dirichlet process. Interna-
tional Conference on Machine Learning (p. 111).

A Permutation-Augmented Sampler for DP Mixture Models

-900000

-850000

-800000

-750000

-700000

-650000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(a) Initialize with 1 cluster

-650000

-645000

-640000

-635000

-630000

-625000

-620000

-615000

-610000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(b) Initialize with 40 clusters

-615000

-614000

-613000

-612000

-611000

 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(c) Initialize with 300 clusters

-800000

-750000

-700000

-650000

-600000

 20 40 60 80 100 120 140

lo
g

 p
ro

b
a

b
ili

ty

seconds

(d) 20 true clusters, 40 dimensions

-850000

-800000

-750000

-700000

-650000

 0 100 200 300 400 500 600

lo
g

 p
ro

b
a

b
ili

ty

seconds

(e) 80 true clusters, 40 dimensions

-900000

-850000

-800000

-750000

-700000

-650000

 0 200 400 600 800 1000 1200

lo
g

 p
ro

b
a

b
ili

ty

seconds

(f) 160 true clusters, 40 dimensions

-800000

-750000

-700000

-650000

-600000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(g) 10 dimensions, 40 true clusters

-850000

-800000

-750000

-700000

-650000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(h) 80 dimensions, 40 true clusters

-1.26e+06

-1.258e+06

-1.256e+06

-1.254e+06

-1.252e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(i) MNIST

-3.65e+06

-3.64e+06

-3.63e+06

-3.62e+06

-3.61e+06

-3.6e+06

-3.59e+06

-3.58e+06

-3.57e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(j) AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(k) MNIST: number of clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(l) MNIST: largest cluster size

Gibbs Gibbs+SplitMerge Gibbs+Perm Gibbs+SplitMerge+Perm

Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.

Liu, J., & Wu, Y. (1999). Parameter expansion for data
augmentation. Journal of the American Statistical As-
sociation, 94, 1264–1274.

Pitman, J. (2002). Combinatorial stochastic processes
(Technical Report 621). Department of Statistics, UC
Berkeley.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25, 855–900.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., & Will-
sky, A. S. (2006). Describing visual scenes using trans-
formed Dirichlet processes. Advances in Neural Infor-
mation Processing Systems (pp. 1297–1304).

Swendsen, R. H., & Wang, J. S. (1987). Nonuniversal criti-
cal dynamics in MC simulations. Physics Review Letters,
58, 86–88.

Tanner, M. A., & Wong, W. H. (1987). The calculation of

posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528–540.

Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hi-
erarchical Dirichlet processes. Journal of the American
Statistical Association, 101, 1566–1581.

West, M. (1995). Hyperparameter estimation in Dirichlet
process mixture models (Technical Report). Duke Uni-
versity.

Xing, E. P., Sharan, R., & Jordan, M. I. (2004). Bayesian
haplotype inference via the Dirichlet process. Interna-
tional Conference on Machine Learning (p. 111).

A Permutation-Augmented Sampler for DP Mixture Models

-900000

-850000

-800000

-750000

-700000

-650000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(a) Initialize with 1 cluster

-650000

-645000

-640000

-635000

-630000

-625000

-620000

-615000

-610000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(b) Initialize with 40 clusters

-615000

-614000

-613000

-612000

-611000

 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(c) Initialize with 300 clusters

-800000

-750000

-700000

-650000

-600000

 20 40 60 80 100 120 140

lo
g

 p
ro

b
a

b
ili

ty

seconds

(d) 20 true clusters, 40 dimensions

-850000

-800000

-750000

-700000

-650000

 0 100 200 300 400 500 600

lo
g

 p
ro

b
a

b
ili

ty

seconds

(e) 80 true clusters, 40 dimensions

-900000

-850000

-800000

-750000

-700000

-650000

 0 200 400 600 800 1000 1200

lo
g

 p
ro

b
a

b
ili

ty

seconds

(f) 160 true clusters, 40 dimensions

-800000

-750000

-700000

-650000

-600000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(g) 10 dimensions, 40 true clusters

-850000

-800000

-750000

-700000

-650000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(h) 80 dimensions, 40 true clusters

-1.26e+06

-1.258e+06

-1.256e+06

-1.254e+06

-1.252e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(i) MNIST

-3.65e+06

-3.64e+06

-3.63e+06

-3.62e+06

-3.61e+06

-3.6e+06

-3.59e+06

-3.58e+06

-3.57e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(j) AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(k) MNIST: number of clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(l) MNIST: largest cluster size

Gibbs Gibbs+SplitMerge Gibbs+Perm Gibbs+SplitMerge+Perm

Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.

Liu, J., & Wu, Y. (1999). Parameter expansion for data
augmentation. Journal of the American Statistical As-
sociation, 94, 1264–1274.

Pitman, J. (2002). Combinatorial stochastic processes
(Technical Report 621). Department of Statistics, UC
Berkeley.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25, 855–900.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., & Will-
sky, A. S. (2006). Describing visual scenes using trans-
formed Dirichlet processes. Advances in Neural Infor-
mation Processing Systems (pp. 1297–1304).

Swendsen, R. H., & Wang, J. S. (1987). Nonuniversal criti-
cal dynamics in MC simulations. Physics Review Letters,
58, 86–88.

Tanner, M. A., & Wong, W. H. (1987). The calculation of

posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528–540.

Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hi-
erarchical Dirichlet processes. Journal of the American
Statistical Association, 101, 1566–1581.

West, M. (1995). Hyperparameter estimation in Dirichlet
process mixture models (Technical Report). Duke Uni-
versity.

Xing, E. P., Sharan, R., & Jordan, M. I. (2004). Bayesian
haplotype inference via the Dirichlet process. Interna-
tional Conference on Machine Learning (p. 111).

A Permutation-Augmented Sampler for DP Mixture Models

-900000

-850000

-800000

-750000

-700000

-650000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(a) Initialize with 1 cluster

-650000

-645000

-640000

-635000

-630000

-625000

-620000

-615000

-610000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(b) Initialize with 40 clusters

-615000

-614000

-613000

-612000

-611000

 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(c) Initialize with 300 clusters

-800000

-750000

-700000

-650000

-600000

 20 40 60 80 100 120 140

lo
g

 p
ro

b
a

b
ili

ty

seconds

(d) 20 true clusters, 40 dimensions

-850000

-800000

-750000

-700000

-650000

 0 100 200 300 400 500 600

lo
g

 p
ro

b
a

b
ili

ty

seconds

(e) 80 true clusters, 40 dimensions

-900000

-850000

-800000

-750000

-700000

-650000

 0 200 400 600 800 1000 1200

lo
g

 p
ro

b
a

b
ili

ty

seconds

(f) 160 true clusters, 40 dimensions

-800000

-750000

-700000

-650000

-600000

 0 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(g) 10 dimensions, 40 true clusters

-850000

-800000

-750000

-700000

-650000

 50 100 150 200 250

lo
g

 p
ro

b
a

b
ili

ty

seconds

(h) 80 dimensions, 40 true clusters

-1.26e+06

-1.258e+06

-1.256e+06

-1.254e+06

-1.252e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(i) MNIST

-3.65e+06

-3.64e+06

-3.63e+06

-3.62e+06

-3.61e+06

-3.6e+06

-3.59e+06

-3.58e+06

-3.57e+06

 0 500 1000 1500 2000 2500 3000

lo
g

 p
ro

b
a

b
ili

ty

seconds

(j) AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(k) MNIST: number of clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

a
u

to
c
o

rr
e

la
ti
o

n

lag

(l) MNIST: largest cluster size

Gibbs Gibbs+SplitMerge Gibbs+Perm Gibbs+SplitMerge+Perm

Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.

Liu, J., & Wu, Y. (1999). Parameter expansion for data
augmentation. Journal of the American Statistical As-
sociation, 94, 1264–1274.

Pitman, J. (2002). Combinatorial stochastic processes
(Technical Report 621). Department of Statistics, UC
Berkeley.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25, 855–900.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., & Will-
sky, A. S. (2006). Describing visual scenes using trans-
formed Dirichlet processes. Advances in Neural Infor-
mation Processing Systems (pp. 1297–1304).

Swendsen, R. H., & Wang, J. S. (1987). Nonuniversal criti-
cal dynamics in MC simulations. Physics Review Letters,
58, 86–88.

Tanner, M. A., & Wong, W. H. (1987). The calculation of

posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528–540.

Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hi-
erarchical Dirichlet processes. Journal of the American
Statistical Association, 101, 1566–1581.

West, M. (1995). Hyperparameter estimation in Dirichlet
process mixture models (Technical Report). Duke Uni-
versity.

Xing, E. P., Sharan, R., & Jordan, M. I. (2004). Bayesian
haplotype inference via the Dirichlet process. Interna-
tional Conference on Machine Learning (p. 111).

19

ICML07 読む会 @ 大岡山 on 2007年8月20日

A Permutation-Augmented Sampler for DP Mixture Models : Percy Liang et al.

まとめ
• permutation-augmented sampler を提案

• !のサンプルの仕方
• random projection (biased) : O(n)

• burn-in phase で高速
• uniform : O(n)

• mixing phase で、competitive

• Markov Gibbs scan : O(n2)

• [栗原の感想]: 結果、burn-in のみ高速化できた。しか
し、burn-in だけなら、他の高速化方法もありうる。

20

20

