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Overview

Most learning algorithms search a model space for a model,
or a parameter space for a parametrization of a fixed model
that best fits the training data.
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Overview

Most learning algorithms search a model space for a model,
or a parameter space for a parametrization of a fixed model
that best fits the training data.

Averagedn-Dependence Estimators (AnDE) is a family of
classification learning algorithms that exemplifies an
alternative paradigm

learner uses a fixed model to extrapolate from observed
low-order probabilities to the required high-order
probability
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So What?

Theoretical interest
alternative paradigms exist;
if things aren’t going right ...

go left!

generative learning can achieve the same low bias profile
as discriminative.

Unique and valuable combination of practical features
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Classification: A geometric view
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Learning by extrapolation

In contrast to search paradigm, naive Bayes extrapolates to
high-order conditional probabilities from lower-order
probabilities.
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Naive Bayes

P(y jx) / P(y;x)= P(y)P(x j y)

P(x j y) = nYi=1P(xi j y)
P(y) P(xi j y)

Learning without search – p. 6/27



Naive Bayes

P(y jx) / P(y;x)= P(y)P(x j y)

Attribute independence assumptionP(x j y) = nYi=1P(xi j y)

P(y) P(xi j y)

Learning without search – p. 6/27



Naive Bayes

P(y jx) / P(y;x)= P(y)P(x j y)

Attribute independence assumptionP(x j y) = nYi=1P(xi j y)
No search

extrapolate high-order probabilities from low order
probabilitiesP(y) andP(xi j y)

1

1 1
1
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The fixed model

y

x1 x2 x3 x4 . . . xn

y
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The fixed model

y

x1 x2 x3 x4 . . . xn

Adding arbitrary links will decrease bias but increase
variance y

x1 x2 x3 x4 . . . xn
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But how to decide which links?

Could use search
requires additional computation
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But how to decide which links?

Could use search
requires additional computation

Alternative: use all of a class of models and combine
predictions
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ANDE

Averagedn Dependence Estimators

n n
nyx x x x yx x x x : : : yx x x x : : :
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ANDE

Averagedn Dependence Estimators

Selectn, the order of dependence

Each model selectsn parent attributes —
all other attributes are independent given the class and
thesen parentsyx x x ... x yx x x ... x : : : yx x x ... x : : :

Each model has lower bias but higher variance than NB

Ensembling reduces the variance
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ANDE (derivation)

ANDE aims to use

AnDE(y;x) = Xs2Sn P(y; xs)P(x j y; xs)=
�an�:

whereSn indicates all subsets of sizen of the setf1; : : : ag.

AnDE(y;x) =
8>>>>>><>>>>>>:
Xs2Sn Æ(s)P(y; xs)P(x j y; xs)Xs2Sn Æ(s) : Xs2Sn Æ(s) > 0

A(n�1)DE(y;x) : otherwise
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ANDE (derivation)

ANDE aims to use

AnDE(y;x) = Xs2Sn P(y; xs)P(x j y; xs)=
�an�:

whereSn indicates all subsets of sizen of the setf1; : : : ag.
In practice we use

AnDE(y;x) =
8>>>>>><>>>>>>:
Xs2Sn Æ(s)P(y; xs)P(x j y; xs)Xs2Sn Æ(s) : Xs2Sn Æ(s) > 0

A(n�1)DE(y;x) : otherwise
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ANDE Equivalences

A0DE = NBA1DE = AODE
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AODE

yx x x ... x yx x x ... x yx x x ... x : : :

1 1
1

1
1 1
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AaDE

Sa = ff1; : : : agg and hence whenn = a, xs = x

AaDE
AaDE(y;x) = P(y;x)P(x j y;x)=�aa�

P(y;x) DP(x j y;x) �aa� P(y;x) DD
O(kQai=1 vi)
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AaDE

Sa = ff1; : : : agg and hence whenn = a, xs = xAaDE seeks to classify using

AaDE(y;x) = P(y;x)P(x j y;x)=�aa�P(y;x) is estimated directly fromDP(x j y;x) and

�aa� both equal 1.0

seeks to classify usingP(y;x) estimated directly fromD,
cascading to ever lower dependence estimators when the
combination of attribute-values is not be present inD.

has asymptotic error of the Bayes optimal classifier!

has computational complexity of at leastO(kQai=1 vi)

Learning without search – p. 14/27



Computational Complexity

Space:O�k� an+1�vn+1�

O�t� an+1��O�ka�an�� A3DE

A2DE
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Computational Complexity

Space:O�k� an+1�vn+1�

Training Time:O�t� an+1��

Testing Time:O�ka�an��

In practice our Weka implementation ofA3DE is defeated by
high-dimensional data

A2DE
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Evaluation

62 UCI data sets used previously in related research

Use fifty runs of two-fold cross validation to estimate bias,
variance, 0-1 loss and RMSE.
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ANDE, n = 0, 1 and 2

Win/Draw/Loss

A2DE vs AODE A2DE vs NB AODE vs NB

W/D/L p W/D/L p W/D/L p

Bias 47/0/15<0.001 49/2/11<0.001 48/0/14<0.001
Variance 19/1/42<0.001 15/0/47<0.001 20/1/41 0.005
0-1 loss 33/2/27 0.259 42/1/190.002 44/1/17<0.001
RMSE 35/1/26 0.153 45/0/17<0.001 49/1/12<0.001
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Error as function of training set size
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Higher-order probabilities vs search

AODE & A2DE vs TAN

Win/Draw/Loss

A2DE vs TAN AODE vs TAN

W/D/L p W/D/L p
Bias 34/0/28 0.263 20/1/410.005
Variance 48/0/14<0.001 52/1/9 <0.001
Zero-one loss 48/0/14<0.001 43/1/18 0.001
RMSE 43/1/18 0.001 40/1/21 0.010
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Higher-order probabilities vs search

A2DE & AODE vs MAPLMG

Win/Draw/Loss

A2DE vs MAPLMG AODE vs MAPLMG

W/D/L p W/D/L p
Bias 40/0/22 0.015 17/4/41 0.001
Variance 19/1/42 0.002 36/5/21 0.031
Zero-one loss 30/1/31 0.500 22/4/360.043
RMSE 34/1/28 0.263 19/0/39 0.006

Win/Draw/Loss, A2DE vs MAPLMG on 10 largest data sets
10/0/0,p = 0:001
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No search vs state-of-the-art

A2DE vs RF10, RF100

Win/Draw/Loss

A2DE vs RF10 A2DE vs RF100

W/D/L p W/D/L p
Bias 14/1/47<0.001 20/2/40 0.007
Variance 56/1/5<0.001 46/1/15<0.001
0-1 loss 40/1/21 0.010 34/2/26 0.399
RMSE 39/0/23 0.028 34/0/28 0.263
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Times

Average training/test time per instance, excluding Census
Income

NB AODE A2DE TAN MAPLMG RF10 RF100

Train 0.0005 0.0007 0.0413 0.0022 0.1290 0.0177 0.1645
Test 0.0001 0.0022 0.0552 0.0002 0.0025 0.0001 0.0017
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Scalability: training quantity

On 10 smallest data sets

NB AODE A2DE TAN MAPLMG RF10 RF100

Train 0.0020 0.0020 0.0920 0.0064 0.1339 0.0114 0.0844

On 10 largest data sets, excluding Census Income

NB AODE A2DE TAN MAPLMG RF10 RF100

Train 0.0001 0.0002 0.0077 0.0004 0.1360 0.0229 0.2016
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Scalability: dimensionality

On 10 lowest dimensional data sets (4-8 atts)

NB AODE A2DE TAN MAPLMG RF10 RF100

Train 0.0010 0.0009 0.0011 0.0018 0.0448 0.0046 0.0311
Test 0.0001 0.0002 0.0002 0.0001 0.0003 0.0001 0.0004

On 10 highest dimensional data sets (43-70 atts)

NB AODE A2DE TAN MAPLMG RF10 RF100

Train 0.0008 0.0017 0.1870 0.0067 0.5025 0.0435 0.4125
Test 0.0002 0.0097 0.2976 0.0005 0.0097 0.0002 0.0033
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Feating

Feating uses the all combinations of attribute-values
approach to ensemble local classifiers.
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Feating

Feating uses the all combinations of attribute-values
approach to ensemble local classifiers.

first generic ensemble method that is effective for low
variance learners such as SVM

Feating uses the mode of the posterior class predictions while
ANDE uses the mean of the joint probability estimates

ANDE has lower bias but higher variance than Feating NB
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Future Research

Alternative classes of models
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Future Research

Alternative classes of models

Approximation of extrapolated values

Extension to numeric data

Extension to high-dimensional data

Weighting, parent selection, child selection

Understand why ensembling joint probabilities results in
lower bias than ensembling posteriors
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Conclusions
ANDE demonstrates that there is an alternative to the search
paradigm that delivers accuracy competitive with the
state-of-the-art
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Conclusions
ANDE demonstrates that there is an alternative to the search
paradigm that delivers accuracy competitive with the
state-of-the-art

A2DE is a practical algorithm with:
computational complexity linear wrt number of training
examples;
direct prediction of class probabilities;
integrated handling of missing values;
robustness in the face of noise;
non-reliance on tuneable parameters;
simple mechanism to control bias/variance trade-off;
incremental, parallel and anytime classification; and
direct theoretical basis (Bayes optimal prediction except
insofar as clearly specified assumptions are violated).
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