Learning without search

Geoff Webb, Zijian Zheng, Kai Ming Ting, Zhihai Wang, Fei Zheng, Janice Boughton, Houssam Salem

Monash University,
Melbourne, Australia
http://www.csse.monash.edu.au/~webb

Overview

- Most learning algorithms search a model space for a model, or a parameter space for a parametrization of a fixed model that best fits the training data.

Overview

- Most learning algorithms search a model space for a model, or a parameter space for a parametrization of a fixed model that best fits the training data.
- Averaged n-Dependence Estimators (A $n \mathrm{DE}$) is a family of classification learning algorithms that exemplifies an alternative paradigm
- learner uses a fixed model to extrapolate from observed low-order probabilities to the required high-order probability

So What?

So What?

- Theoretical interest
- alternative paradigms exist;

So What?

- Theoretical interest
- alternative paradigms exist; if things aren't going right ...

So What?

- Theoretical interest
- alternative paradigms exist; if things aren't going right ... go left!

So What?

- Theoretical interest
- alternative paradigms exist; if things aren't going right ...
go left!
- generative learning can achieve the same low bias profile as discriminative.

So What?

- Theoretical interest
- alternative paradigms exist; if things aren't going right ...
go left!
- generative learning can achieve the same low bias profile as discriminative.
- Unique and valuable combination of practical features

Classification: A geometric view

Learning by extrapolation

- In contrast to search paradigm, naive Bayes extrapolates to high-order conditional probabilities from lower-order probabilities.

Naive Bayes

- $\mathrm{P}(y \mid \mathbf{x}) \propto \mathrm{P}(y, \mathbf{x})$

$$
=\mathrm{P}(y) \mathrm{P}(\mathbf{x} \mid y)
$$

Naive Bayes

- $\mathrm{P}(y \mid \mathbf{x}) \propto \mathrm{P}(y, \mathbf{x})$

$$
=\mathrm{P}(y) \mathrm{P}(\mathbf{x} \mid y)
$$

- Attribute independence assumption
- $\mathrm{P}(\mathbf{x} \mid y)=\prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid y\right)$

Naive Bayes

- $\mathrm{P}(y \mid \mathbf{x}) \propto \mathrm{P}(y, \mathbf{x})$

$$
=\mathrm{P}(y) \mathrm{P}(\mathbf{x} \mid y)
$$

- Attribute independence assumption
- $\mathrm{P}(\mathbf{x} \mid y)=\prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid y\right)$
- No search
- extrapolate high-order probabilities from low order probabilities $\mathrm{P}(y)$ and $\mathrm{P}\left(x_{i} \mid y\right)$

The fixed model

The fixed model

- Adding arbitrary links will decrease bias but increase variance

But how to decide which links?

- Could use search
- requires additional computation

But how to decide which links?

- Could use search
- requires additional computation
- Alternative: use all of a class of models and combine predictions

ANDE

- Averaged n Dependence Estimators

ANDE

- Averaged n Dependence Estimators
- Select n, the order of dependence

ANDE

- Averaged n Dependence Estimators
- Select n, the order of dependence
- Each model selects n parent attributes -
- all other attributes are independent given the class and these n parents

ANDE

- Averaged n Dependence Estimators
- Select n, the order of dependence
- Each model selects n parent attributes -
- all other attributes are independent given the class and these n parents

ANDE

- Averaged n Dependence Estimators
- Select n, the order of dependence
- Each model selects n parent attributes -
- all other attributes are independent given the class and these n parents

- Each model has lower bias but higher variance than NB

ANDE

- Averaged n Dependence Estimators
- Select n, the order of dependence
- Each model selects n parent attributes -
- all other attributes are independent given the class and these n parents

- Each model has lower bias but higher variance than NB
- Ensembling reduces the variance

ANDE (derivation)

- ANDE aims to use

$$
\mathrm{A} n \mathrm{DE}(y, \mathbf{x})=\sum_{s \in S^{n}} \mathrm{P}\left(y, x_{s}\right) \mathrm{P}\left(\mathbf{x} \mid y, x_{s}\right) /\binom{a}{n}
$$

where S^{n} indicates all subsets of size n of the set $\{1, \ldots a\}$.

ANDE (derivation)

- ANDE aims to use

$$
\mathrm{A} n \mathrm{DE}(y, \mathbf{x})=\sum_{s \in S^{n}} \mathrm{P}\left(y, x_{s}\right) \mathrm{P}\left(\mathbf{x} \mid y, x_{s}\right) /\binom{a}{n} .
$$

where S^{n} indicates all subsets of size n of the set $\{1, \ldots a\}$.

- In practice we use

$$
\operatorname{An} \mathrm{DE}(y, \mathbf{x})= \begin{cases}\frac{\sum_{s \in S^{n}} \delta(s) \mathrm{P}\left(y, x_{s}\right) \mathrm{P}\left(\mathbf{x} \mid y, x_{s}\right)}{\sum_{s \in S^{n}} \delta(s)} & : \sum_{s \in S^{n}} \delta(s)>0 \\ \mathrm{~A}(n-1) \mathrm{DE}(y, \mathbf{x}) & : \text { otherwise }\end{cases}
$$

ANDE Equivalences

- $\mathrm{A} 0 \mathrm{DE}=\mathrm{NB}$
- $\mathrm{A} 1 \mathrm{DE}=\mathrm{AODE}$

AODE

용 MONASHUniversity

Popular

1. Affendey, L.S., Paris, I.H.M. Mustapha, N. Sulaiman, M.N., Muda, Z.: Ranking of influencing factors in predicting students academic performance. Inform. Technol. J., 9 (2010) 832-837.
2. Birzele, F., Kramer, S.: A new representation for protein secondary structure prediction based on frequent patterns. Bioinformatics 22(21) (2006) 2628-2634.
3. Camporelli, M.: Using a Bayesian Classifier for Probability Estimation: Analysis of the AMIS Score for Risk Stratification in Myocardial Infarction. Diploma Thesis, Dept. Informatics, U. Zurich (2006).
4. Eduardo, AL., Iakes E., Beatriz, G., Alfonso, V., David, J.: EcID. A database for the inference of functional interactions in E. coli. Nucleic Acids Research (2008) doi:10.1093/nar/gkn853
5. Ferrari, L.D., Aitken, S.: Mining housekeeping genes with a naive Bayes classifier. BMC Genomics 7(1) (2006) 277.
6. Flikka, K., Martens, L., Vandekerckhove, J., Gevaert, K., Eidhammer, I.: Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering. Proteomics 6(7) (2006) 20862094.
7. Garcia, B., Aler, R., Ledezma, A., Sanchis, A.: Protein-protein functional Assoc. prediction using genetic programming. In: Proc. Tenth Annual Conf. Genetic and Evolutionary Computation, ACM. (2008) 347-348.
8. García-Jiménez B, Juan D, Ezkurdia I, Andrés-León E, Valencia A.: Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach. PLoS ONE (2010) 5(4): e9969. doi:10.1371/journal.pone. 0009969
9. Hopfgartner, F., Urruty, T., Lopez, P.B., Villa, R., Jose, J.M: Simulated evaluation of faceted browsing based on feature selection. Multimedia Tools and Applications 47(3) (2010) 631-662.
10. Hunt, K.: Evaluation of Novel Algorithms to Optimize Risk Stratification Scores in Myocardial Infarction. PhD thesis, Dept. Informatics, University of Zurich (2006).
11. Kunchevaa, L.I., Vilas, V.J.D.R., Rodr'ıguezc, J.J.: Diagnosing scrapie in sheep: A classification experiment. Computers in Biology and Medicine 37(8) (2007) 1194-1202.
12. Kurz, D, Bernstein, A, Hunt, K, Radovanovic, D, Erne, P, Siudak, Z, Bertel, O: Simple point-of-care risk stratification in acute coronary
syndromes: the AMIS model. British Medical Journal 95(8) (2009) 662.
13. Lasko, T.A., Atlas, S.J., Barry, M.J., Chueh, K.H.C.: Automated identification of a physician's primary patients. Journal of the American Medical Informatics Assoc. 13(1) (2006) 74-79.
14. Lau, Q.P., Hsu, W., Lee, M.L., Mao, Y., Chen, L.: Prediction of cerebral aneurysm rupture. In: Proc. $19^{\text {th }}$ IEEE International Conf. Tools with Artificial Intelligence (2007) 350-357.
15. Leon, A., et al.: EcID. A database for the inference of functional interactions in E. coli. Nucleic Acids Research 37(Database issue) (2009) D629.
16. Liew, CY., Ma, XH., Yap, CW.: Consensus model for identification of novel PI3K inhibitors in large chemical library. Journal of ComputerAided Molecular Design. 24(2) (2010) 131-141.
17. Masegosa, AR., Joho, H., Jose JM.: Evaluating Query-Independent Object Features for Relevancy Prediction. In Advances in Information Retrieval. Springer Berlin. (2007) 283-294.
18. Nikora, A.P.: Classifying requirements: Towards a more rigorous analysis of natural-language specifications. In: Proc. Sixteenth IEEE International Symp.Software Reliability Engineering (2005) 291-300.
19. Orhan, Z., Altan, Z.: Impact of feature selection for corpus-based WSD in Turkish. In: Proc. $5^{\text {th }}$ Mexican International Conf. Artificial Intelligence (2006) 868-878.
20. Shahri, SH., Jamil, H.: An Extendable Meta-learning Algorithm for Ontology Mapping. In Flexible Query Answering Systems, Springer (2009) 418-430.
21. Simpson, M., Demner-Fushman, D., Sneiderman, C., Antani, S., Thoma, G.: Using non-lexical features to identify effective indexing terms for biomedical illustrations. In: Proc. 12th Conf. European Chapter of the Assoc. Computational Linguistics (2009) 737-744.
22. Tian, Y., Chen, C., Zhang, C: AODE for Source Code Metrics for Improved Software Maintainability. Fourth International Conf. Semantics, Knowledge and Grid (2008) pp.330-335.
23. Wang, H., Klinginsmith, J., Dong, X., Lee, A., Guha, R., Wu, Y., Crippen, G., Wild, D.: Chemical data mining of the NCI human tumor cell line database. Journal of Chemical Information and Modeling 47(6) (2007) 2063-2076.
$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\mathrm{A} a \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\mathrm{A} a \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

- $\mathrm{P}(y, \mathbf{x})$ is estimated directly from \mathcal{D}

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\mathrm{A} a \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

- $\mathrm{P}(y, \mathbf{x})$ is estimated directly from \mathcal{D}
- $\mathrm{P}(\mathbf{x} \mid y, \mathbf{x})$ and $\binom{a}{a}$ both equal 1.0

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\mathrm{A} a \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

- $\mathrm{P}(y, \mathbf{x})$ is estimated directly from \mathcal{D}
- $\mathrm{P}(\mathbf{x} \mid y, \mathbf{x})$ and $\binom{a}{a}$ both equal 1.0
- seeks to classify using $\mathrm{P}(y, x)$ estimated directly from \mathcal{D}, cascading to ever lower dependence estimators when the combination of attribute-values is not be present in \mathcal{D}.

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\operatorname{Aa} \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

- $\mathrm{P}(y, \mathbf{x})$ is estimated directly from \mathcal{D}
- $\mathrm{P}(\mathbf{x} \mid y, \mathbf{x})$ and $\binom{a}{a}$ both equal 1.0
- seeks to classify using $\mathrm{P}(y, \mathbf{x})$ estimated directly from \mathcal{D}, cascading to ever lower dependence estimators when the combination of attribute-values is not be present in \mathcal{D}.
- has asymptotic error of the Bayes optimal classifier!

$\mathrm{A} a \mathrm{DE}$

- $S^{a}=\{\{1, \ldots a\}\}$ and hence when $n=a, x_{s}=\mathbf{x}$
- $\mathrm{A} a \mathrm{DE}$ seeks to classify using

$$
\mathrm{A} a \mathrm{DE}(y, \mathbf{x})=\mathrm{P}(y, \mathbf{x}) \mathrm{P}(\mathbf{x} \mid y, \mathbf{x}) /\binom{a}{a}
$$

- $\mathrm{P}(y, \mathbf{x})$ is estimated directly from \mathcal{D}
- $\mathrm{P}(\mathbf{x} \mid y, \mathbf{x})$ and $\binom{a}{a}$ both equal 1.0
- seeks to classify using $\mathrm{P}(y, \mathbf{x})$ estimated directly from \mathcal{D}, cascading to ever lower dependence estimators when the combination of attribute-values is not be present in \mathcal{D}.
- has asymptotic error of the Bayes optimal classifier!
- has computational complexity of at least $\mathrm{O}\left(k \prod_{i=1}^{a} v_{i}\right)$

Computational Complexity

- Space: $\mathrm{O}\left(k\binom{a}{n+1} v^{n+1}\right)$

Computational Complexity

- Space: $\mathrm{O}\left(k\binom{a}{n+1} v^{n+1}\right)$
- Training Time: $\mathrm{O}\left(t\binom{a}{n+1}\right)$

Computational Complexity

- Space: $\mathrm{O}\left(k\binom{a}{n+1} v^{n+1}\right)$
- Training Time: $\mathrm{O}\left(t\binom{a}{n+1}\right)$
- Testing Time: $\mathrm{O}\left(k a\binom{a}{n}\right)$

Computational Complexity

- Space: $\mathrm{O}\left(k\binom{a}{n+1} v^{n+1}\right)$
- Training Time: $\mathrm{O}\left(t\binom{a}{n+1}\right)$
- Testing Time: $\mathrm{O}\left(k a\binom{a}{n}\right)$
- In practice our Weka implementation of A3DE is defeated by high-dimensional data

Evaluation

- 62 UCI data sets used previously in related research
- Use fifty runs of two-fold cross validation to estimate bias, variance, 0-1 loss and RMSE.

ANDE, $n=\mathbf{0}, 1$ and 2

Win/Draw/Loss

	A2DE vs AODE		A2DE vs NB		AODE vs NB	
	W/D/L	p	W/D/L	p	W/D/L	p
Bias	47/0/15	<0.001	49/2/11	<0.001	48/0/14	<0.001
Variance	19/1/42	<0.001	15/0/47	<0.001	20/1/41	0.005
0-1 loss	33/2/27	0.259	42/1/19	0.002	44/1/17	<0.001
RMSE	35/1/26	0.153	45/0/17	<0.001	49/1/12	<0.001

Error as function of training set size

Higher-order probabilities vs search

- AODE \& A2DE vs TAN
- Win/Draw/Loss

	A2DE vs TAN			AODE vs TAN	
	W/D/L	p		W/D/L	p
Bias	$34 / 0 / 28$	0.263		$20 / 1 / 41$	0.005
Variance	$48 / 0 / 14$	<0.001		$52 / 1 / 9$	<0.001
Zero-one loss	$48 / 0 / 14$		<0.001		$43 / 1 / 18$
RMSE	$43 / 1 / 18$	0.001		$40 / 1 / 21$	0.001

Higher-order probabilities vs search

- A2DE \& AODE vs MAPLMG
- Win/Draw/Loss

	A2DE vs MAPLMG			AODE vs MAPLMG	
	W/D/L	p		W/D/L	p
Bias	$40 / 0 / 22$	0.015		$17 / 4 / 41$	0.001
Variance	$19 / 1 / 42$	0.002		$36 / 5 / 21$	0.031
Zero-one loss	$30 / 1 / 31$	0.500		$22 / 4 / 36$	0.043
RMSE	$34 / 1 / 28$	0.263		$19 / 0 / 39$	0.006

- Win/Draw/Loss, A2DE vs MAPLMG on 10 largest data sets - $10 / 0 / 0, p=0.001$

No search vs state-of-the-art

- A2DE vs RF10, RF100
- Win/Draw/Loss

	A2DE vs RF10		A2DE vs RF100		
	W/D/L	p		W/D/L	p
Bias	$14 / 1 / 47$	<0.001		$20 / 2 / 40$	0.007
Variance	$56 / 1 / 5$	<0.001		$46 / 1 / 15$	<0.001
$0-1$ loss	$40 / 1 / 21$	0.010		$34 / 2 / 26$	0.399
RMSE	$39 / 0 / 23$	0.028	$34 / 0 / 28$	0.263	

Times

- Average training/test time per instance, excluding Census Income

	NB	AODE	A2DE	TAN	MAPLMG	RF10	RF100
Train	0.0005	0.0007	0.0413	0.0022	0.1290	0.0177	0.1645
Test	0.0001	0.0022	0.0552	0.0002	0.0025	0.0001	0.0017

Scalability: training quantity

- On 10 smallest data sets

NB AODE A2DE TAN MAPLMG RF10 RF100
Train $0.00200 .00200 .09200 .0064 \quad 0.1339 \quad 0.01140 .0844$

- On 10 largest data sets, excluding Census Income NB AODE A2DE TAN MAPLMG RF10 RF100
Train 0.00010 .00020 .00770 .00040 .13600 .02290 .2016

Scalability: dimensionality

- On 10 lowest dimensional data sets (4-8 atts)
NB AODE A2DE TAN MAPLMG RF10 RF100

Train	0.0010	0.0009	0.0011	0.0018	0.0448	0.0046	0.0311
Test	0.0001	0.0002	0.0002	0.0001	0.0003	0.0001	0.0004

- On 10 highest dimensional data sets (43-70 atts)

NB AODE A2DE TAN MAPLMG RF10 RF100
Train $0.00080 .00170 .18700 .0067 \quad 0.50250 .04350 .4125$
$\begin{array}{lllllllllll}\text { Test } & 0.0002 & 0.0097 & 0.2976 & 0.0005 & 0.0097 & 0.0002 & 0.0033\end{array}$

Feating

- Feating uses the all combinations of attribute-values approach to ensemble local classifiers.

Feating

- Feating uses the all combinations of attribute-values approach to ensemble local classifiers.
- first generic ensemble method that is effective for low variance learners such as SVM

Feating

- Feating uses the all combinations of attribute-values approach to ensemble local classifiers.
- first generic ensemble method that is effective for low variance learners such as SVM
- Feating uses the mode of the posterior class predictions while ANDE uses the mean of the joint probability estimates

Feating

- Feating uses the all combinations of attribute-values approach to ensemble local classifiers.
- first generic ensemble method that is effective for low variance learners such as SVM
- Feating uses the mode of the posterior class predictions while ANDE uses the mean of the joint probability estimates
- ANDE has lower bias but higher variance than Feating NB

Future Research

- Alternative classes of models

Future Research

- Alternative classes of models
- Approximation of extrapolated values

Future Research

- Alternative classes of models
- Approximation of extrapolated values
- Extension to numeric data

Future Research

- Alternative classes of models
- Approximation of extrapolated values
- Extension to numeric data
- Extension to high-dimensional data

Future Research

- Alternative classes of models
- Approximation of extrapolated values
- Extension to numeric data
- Extension to high-dimensional data
- Weighting, parent selection, child selection

Future Research

- Alternative classes of models
- Approximation of extrapolated values
- Extension to numeric data
- Extension to high-dimensional data
- Weighting, parent selection, child selection
- Understand why ensembling joint probabilities results in lower bias than ensembling posteriors

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;
- robustness in the face of noise;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;
- robustness in the face of noise;
- non-reliance on tuneable parameters;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;
- robustness in the face of noise;
- non-reliance on tuneable parameters;
- simple mechanism to control bias/variance trade-off;

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;
- robustness in the face of noise;
- non-reliance on tuneable parameters;
- simple mechanism to control bias/variance trade-off;
- incremental, parallel and anytime classification; and

Conclusions

- ANDE demonstrates that there is an alternative to the search paradigm that delivers accuracy competitive with the state-of-the-art
- A2DE is a practical algorithm with:
- computational complexity linear wrt number of training examples;
- direct prediction of class probabilities;
- integrated handling of missing values;
- robustness in the face of noise;
- non-reliance on tuneable parameters;
- simple mechanism to control bias/variance trade-off;
- incremental, parallel and anytime classification; and
- direct theoretical basis (Bayes optimal prediction except insofar as clearly specified assumptions are violated).

