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Kernel Method in a Big Picture

• Kernel method = a systematic way of mapping data into a
high-dimensional reproducing kernel Hilbert space (RKHS)
to extract higher order moments or nonlinearity.

xi


H  

Feature map

Feature space (RKHS)

xi
xｊ

Space of original data

Feature map

X =⇒ Φ(X) (random vector on H),

• Linear statistical methods are applied on RKHS:
SVM, kernel PCA, etc.

4 / 35



Overview: Inference with Kernel Mean

Basic statistics on RKHS are already useful.

• Kernel mean: E[Φ(X)] can characterize the probability of
X.

• Applied to nonparametric statistical inference.
• homogeneity test (Gretton et al. 2007),
• independence test (Gretton et al 2008)
• conditional independence test (Fukumizu et al 2008),
• dimension reduction (F., Bach, Jordan, 2004, 2010), etc.
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Overview: Kernel Bayesian Inference

• Bayes’ rule:

q(x|y) =
p(y|x)π(x)

qY(y)
,

qY(y) =

∫
p(y|x)π(x)dx.

• Of course, there are many ways of computing /
approximating Bayes’ rule. e.g. MCMC, importance
sampling, sequential MC, variational method, EP, etc. Yet,
its computation is challenging.

• This talk: kernel way of computing Bayes’ rule.

Express the kernel mean of posterior by that of posterior
and likelihood.
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Positive Definite Kernel

Def. Let X be a set. k : X × X → R is a positive definite kernel
if k(x, y) = k(y, x) and for any x1, . . . , xn ∈ X the symmetric
matrix

(k(xi, xj))
n
i,j=1 =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (Gram matrix)

is positive semidefinite.

Examples. (on Rm)

• Gaussian kernel: exp
(
− 1

2σ2 ‖x− y‖2
)

.

• Polyn. kernel: (xT y + c)d (c ≥ 0, d ∈ N).
Hk = {poly. deg ≤ d}.
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Reproducing Kernel Hilbert Space

Theorem (Moore-Aronszajn (1950))

Let k : X × X → C (or R) be a positive definite kernel on a set
X . Then, there uniquely exists a Hilbert space Hk consisting of
functions on X such that

1. k(·, x) ∈ Hk for every x ∈ X ,

2. Span{k(·, x) | x ∈ X} is dense in Hk,
3. k is the reproducing kernel on Hk, i.e.

〈f, k(·, x)〉Hk = f(x) (∀x ∈ X , ∀f ∈ Hk).
(reproducing property)

RKHS is used as a feature space, which may be infinite
dimensional.
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Data Analysis with Positive Definite Kernels

• Feature map: mapping random variable or data:

X 7→ Φ(X) = k(·, X) random variable on Hk,

X 3 X1, . . . , Xn 7→ Φ(X1), . . . ,Φ(Xn) ∈ Hk

• Kernel trick: inner product is easily computable.

〈Φ(Xi),Φ(Xj)〉 = k(Xi, Xj) (Gram matrix)

• Linear methods are extendable to RKHS with efficient
computation.

• Typically, problems can be reduced to Gram matrices of
sample size.
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Mean and Covariance on RKHS I

X ∼ P : random variable on X . kX : pos. def. kernel on X .

• Def. mP : kernel mean of X on Hk

mP := E[Φ(X)] = E[k(·, X)] =

∫
k(·, x)dP (x) ∈ Hk.

• Fact: 〈f,mP 〉 = E[f(X)]. (reproducing property)

• mP expresses higher-order moments of X.
e.g. suppose k(u, x) = c0 + c1(ux) + c2(ux)2 + · · · (ci > 0).

mX(u) = c0 + c1E[X]u+ c2E[X2]u2 + · · ·
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Mean and Covariance on RKHS II
(X,Y ): random vector on X × Y, ∼ P . kX , kY : pos. def.
kernels on X ,Y (resp).

• Def. (uncentered) cross-covariance operator

CPYX : HX → HY , 〈g, CPYX f〉 = E[g(Y )f(X)].

• Covariance operator

CPXX : HX → HX , 〈h,CPXX f〉 = E[h(X)f(X)].

• (Cross-)covariance operator = mean in the product space.

CPYX ⇐⇒ mP = E[kY(·, Y )⊗ kX (·, X)] ∈ HX ⊗HY .

∵ 〈g, CPY,X f〉 = 〈g ⊗ f,mP 〉.
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Mean and Covariance on RKHS III

Given (X1, Y1), . . . , (Xn, Yn) ∼ P , i.i.d.,

• Empirical Estimation:

m̂X =
1

n

n∑
i=1

kX (·, Xi),

ĈY X =
1

n

n∑
i=1

kY(·, Yi)⊗ kX (·, Xi).

• Typically, Gram matrix expression is obtained.

• Op(n−1/2)-consistency in RKHS-norm is guaranteed
(Gretton et al. 2005, etc).
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Characteristic Kernel: Representing Class
P: the set of all probabilities on a measurable space (X ,B).

Def. (F., Bach, Jordan 2004, 2009) k is called characteristic if

P → H, P 7→ mP

is injective, i.e., EX∼P [k(·, X)] = EX∼Q[k(·, X)] ⇐⇒ P = Q.

• Example. Gaussian kernel, Laplacian kernel. (Sriperumbudur

et al. 2010)

• With characteristic kernels,

Inference on P =⇒ Inference on mP

- two sample test ⇒ mP = mQ?

- independence test ⇒ mXY = mX ⊗mY ?

• Hereafter, all kernels are assumed to be characteristic.
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Bayes’ Rule

Bayes’ Rule:

q(x|y) =
q(x, y)

qY(y)
=
p(y|x)π(x)

qY(y)
, qY(y) =

∫
q(x, y)dx.

Π: prior (p.d.f. π(x)).
P : joint distribution to give likelihood p(y|x).

Kernel realization:

• Given mΠ (kernel mean of Π) and CPYX , C
P
XX (covariance

operators of p(x, y)), express the kernel mean of the
posterior

mQX |y :=

∫
kX (·, x)q(x|y)dx
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Conditional Probabilities with Kernels I
• Basic Proposition (F., Bach, Jordan 2004)

If E[g(Y )|X = ·] ∈ HX for g ∈ HY , then

CPXXE[g(Y )|X = ·] = CPXYg.

∵) 〈f, CPXXE[g(Y )|X = ·]〉 = E[f(X)E[g(Y )|X]] = E[f(X)g(Y )] = 〈f, CPXYg〉.

• Expression of kernel mean of conditional probability p(y|x):

E[kY(·, Y )|X = x] = CPYXC
P
XX
−1
kX (·, x).

(A bit naive, but can be justified.)

∵) E[g(Y )|X = ·] = C−1
XXCXYg =⇒

〈g,E[kY(·, Y )|X = x]〉 = 〈C−1
XXCXYg, kX (·, x)〉 = 〈g, CYXC

−1
XXkX (·, x)〉.
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Kernel Mean of Posterior
Q: joint probability with p.d.f. q(x, y) = p(y|x)π(x).

Kernel mean of posterior

mQX |y := EQ[kX (·, X)|Y = y] = CQXYC
Q
YY
−1
kY(·, y).

• Ingredients:

mQY = CPY XC
P
XX

−1
mΠ ←→ qY(y) =

∫
p(y|x)π(x)dx.

Recall: covariance = mean of product.

CQXY ⇐⇒ mQ = CP(XY)XC
P
XX
−1
mΠ ∈ HX ⊗HY ,

CQYY ⇐⇒ mQ
Y×Y = CP(YY)XC

P
XX

−1
mΠ ∈ HY ⊗HY ,

CP(XY)X = EP
[(
kX (·, X)⊗kY(·, Y )

)
⊗kX (·, X)

]
: HX → HX⊗HY ,

CP(YY)X = EP
[(
kY(·, Y )⊗kY(·, Y )

)
⊗kX (·, X)

]
: HX → HY⊗HY .
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Kernel Bayes’ Rule
Kernel Bayes’ Rule

(X1, Y1), . . . , (Xn, Yn) ∼ P , i.i.d. m̂Π =
∑`

j=1 γjkX (·, Uj).
Gram matrix expression of the kernel mean of posterior is

m̂QX |y =

n∑
i=1

wi(y)kX (·, Xi), w(y) = LY (L2
Y + δnIn)−1ΛkY (y),

for any y ∈ Y, where

LY = ΛGY , Λ = Diag
(
(GX + nεnIn)−1GXUγ

)
,

kY = (kY(·, Y1), . . . , kY(·, Yn))T ,

GX = (kX (Xi, Xj)), GY = (kY(Yi, Yj)), GXU = (kX (Xi, Uj)),

and εn, δn are regularization constants.

• The posterior is given by a weighted sample (Xi, wi), while
the weights may not be positive.
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Consistency

Theorem
Assumptions:

• π/pX ∈ R(AXC
P
XX

1/2
).

• ‖m̂Π −mΠ‖HX = Op(n
−α) (n→∞) for some 0 < α ≤ 1/2.

• AY : HY → L2(PY ), f 7→ f is injective.

• E[f(X)|Y = ·] ∈ HY for any f ∈ HX , and S : HX → HY ,
f 7→ E[f(X)|Y = ·] makes (CQYY)−νS bounded for ν > 0.

With εn = n−
2
3
α and δn = n

−max{ 4
15
α, 4

3(ν+3)
α}, for any y ∈ Y∥∥m̂QX |y −mQX |y

∥∥
HX

= Op(n
−min{ 4

15
α, 2ν

3(ν+3)
α}

), (n→∞).

Note: the rate does not depend on the dimensionality.
c.f. Kernel density estimation.
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Kernel Bayesian Inference I

Kernel Bayesian Inference (KBI) = ‘Nonparametric’ Bayesian
inference using kernel Bayes’ rule.

• Likelihood p(y|x) and the prior π(x) are given by samples.

Case I Explicit form of likelihood p(y|x) is unavailable, but sampling
from p(y|x) is easy.
c.f. Approximate Bayesian Computation (ABC).

Case II Likelihood p(y|x) is unknown, but sample from p(x, y) is
given in training phase (discussed later).

• If both of p(y|x) and π(x) are known, there are many good
numerical / approximation methods, such as MCMC, SMC,
variational Bayes, etc.
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Kernel Bayesian Inference II
• Kernel Bayesian Inference estimates the kernel mean
mQX |y =

∫
kX (·, x)q(x|y)dx, not the posterior q(x|y) itself.

• How to use for inference?
• Expectation: for f =

∑n
i=1 fikX (·, Xi),∫

f(x)q(x|y)dx ←−
n∑
i=1

fiwi(y).

• Approximate MAP solution:

max
x

m̂QX |y(x)

may be solved iteratively.

• Time complexity: matrix inversion costs O(n3), but with
low-rank (r) approximation, KBI costs O(nr2).
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KBI for Nonparametric Hidden Markov Model

Model: p(X,Y ) = π(X1)
∏T
t=1p(Yt|Xt)

∏T−1
t=1 q(Xt+1|Xt),

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…

• Assume
• p(y|x) and/or q(x|x′) is not known.
• But, sample (Xt, Yt)

T
t=1 is available in training phase.

• Testing phase:
• given ỹ1, . . . , ỹt, compute maxxs p(xs|ỹ1, . . . , ỹt).

=⇒ Kernel Bayesian inference: maxXs m̂xs|ỹ1,...,ỹt .

• E.g. when measurement of hidden states is expensive, or
when hidden states are measured with time delay in
predicting future state.
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• Sequential filtering:

m̂xt|ỹ1,...,ỹt =
∑T

i=1α
(t)
i kX (·, Xi), α(t) = α(t)(ỹ1, . . . , ỹt).

• Update rule:

µ̂(t+1) = (GX + TεT IT )−1GX,X+1(GX + TεT IT )−1GXα
(t).

α(t+1) = L
(t+1)
Y

(
(L

(t+1)
Y )2 + δT IT

)−1
Λ(t+1)kY (ỹt+1).

GX,X+1
: “transfer" matrix

(
GX,X+1

)
ij

= kX (Xi, Xj+1).

Λ(t+1) = diag(µ̂
(t+1)
1 , . . . , µ̂

(t+1)
T ) and L(t+1)

Y = Λ(t+1)GY ,

• Prediction and smoothing are similar.

• The computational cost for each update is O(Tr2), once
low-rank (r) approximation is used for training sample.
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Comparison with Approx. Bayesian Computation

Assume: p(y|x) is not explicitly known, but sampling is possible.

Approximate Bayesian Computation (ABC): existing method of
sampling from posterior.

• Procedure (sampling and rejection):
1. y given.
2. Sample Xi ∼ Π. Yi ∼ p(Y |Xi).
3. If d(y, Yi) < ε, accept Xi.
4. Repeat 2 and 3.

Accepted sample X1, . . . , XN ∼ q(X|y) approximately.

• Exact if ε→ 0, but acceptance rate is small particularly
when the dimension of X is large.

• Proposed and used mainly in population genetics.
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Experimental results

• task: E[X|Y = y], evaluated at 10 different points of y. 10
random runs.

• Gaussian prior and likelihood so that the truth can be calculated.

• Gaussian kernels are used for KBI.

• Incomplete Cholesky is used for the low-rank approximation in
KBI (εn = tolerance ∝ 1/n, δn = 2εn).
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Experiments on Nonparametric Filtering
(a) Noisy rotation{( ut+1

vt+1

)
=
( cos θt+1

sin θt+1

)
+ Zt, θt+1 = arctan(vt/ut) + 0.3,

Yt = (ut, vt)
T +Wt,

Zt ∼ N(0, 0.22I2),Wt ∼ N(0, 0.22I).

Approximate MAP solution are computed by KBI.
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Note: KBI does not know the dynamics, while EKF and UKF use the
exact knowledge.
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(b) Noisy oscillation{( ut+1
vt+1

)
= (1 + 0.4 sin(8θt+1))

( cos θt+1

sin θt+1

)
+ Zt, θt+1 = arctan(vt/ut) + 0.4,

Yt = (ut, vt)
T +Wt,

Zt ∼ N(0, 0.22I2), Wt ∼ N(0, 0.22I).
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Estimation of Camera Angle
• Hidden Xt: angle of a camera.

• Observed Yt: movie frame of a room + additive Gaussian noise.

• Data: Synthesized by POV-Ray (http://www.povray.org).
Xt: 3600 downsampled frames of 20× 20 RGB pixels (1200
dim.). The first 1800 frames are used for training, and the
second half is used for test.
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Results

R9 SO(3)

KBI (Gauss) Kalman (R9) KBI (Tr) Kalman (Q∗)
σ2 = 10−4 0.21± 0.02 1.98± 0.08 0.15± < 0.01 0.56± 0.02

σ2 = 10−3 0.22± 0.01 1.94± 0.06 0.21± 0.01 0.54± 0.02

Average MSE of estimating camera angles (10 runs)

• For Kalman filter, dynamics is estimated with linear Gaussian
model.

• In R9 model, Gaussian kernel for KBI.

• In SO(3) model, Tr[AB] for KBI, and quaternion expression for
Kalman filter.
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Conclusions

• Kernel Bayes’ rule: kernel way of realizing Bayes’ rule
nonparametrically.

Kernel mean of posterior can be computed given samples
from the prior and likelihood.

• No explicit form of the likelihood is needed.
• Consistency is guaranteed, and the rate does not depend

on the dimensionality.
• Computational cost is linear w.r.t. sample size if low-rank

approximation is used.

• Future / on-going works:
• Kernel (parameter) choice?
• Applications to various Bayesian inference.
• Combination of parametric and non-parametric HMM

(parametric for transition, nonparametric for observation).
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Thank you!
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