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Abstract

We introduce an extended formulation of multi-task learning (MTL) cafladh-

metric task learning (PTL}hat can systematically handle infinitely many tasks
parameterized by a continuous parameter. Our key finding is that, for a certain
class of PTL problems, the path of the optimal task-wise solutions can be repre-
sented as piecewise-linear functions of the continuous task parameter. Based on
this fact, we employ a parametric programming technique to obtain the common
shared representation across all the continuously parameterized tasks. We show
that our PTL formulation is useful in various scenarios such as learning under
non-stationarity, cost-sensitive learning, and quantile regression. We demonstrate
the advantage of our approach in these scenarios.

1 Introduction

Multi-task learning (MTL) has been studied for learning multiple related tasks simultaneously. A
key assumption behind MTL is that there exists a common shared representation across the tasks.
Many MTL algorithms attempt to find such a common representation and at the same time to learn
multiple tasks under that shared representation. For example, we can enforce all the tasks to share a
common feature subspace or a common set of variables by using an algorithm introduced in [1, 2]
that alternately optimizes the shared representation and the task-wise solutions.

Although the standard MTL formulation can handle only a finite number of tasks, it is sometimes
more natural to consider infinitely many tasks parameterized by a continuous parameter, e.g., in
learning under non-stationarity3] where learning problems change over continuous tiowest-
sensitive learning4] where loss functions are asymmetric with continuous cost balancejuard

tile regression5] where the quantile is a continuous variable between zero and one. In order to
handle these infinitely many parametrized tasks, we propose in this paper an extended formulation
of MTL called parametric-task learning (PTL)

The key contribution of this paper is to show that, for a certain class of PTL problems, the optimal
common representation shared across infinitely many parameterized tasks can be obtainable. Specif-
ically, we develop an alternating minimization algoritfanha [1, 2] for finding the entire continuum

of solutions and the common feature subspace (or the common set of variables) among infinitely
many parameterized tasks. Our algorithm exploits the fact that, for those classes of PTL problems,
the path of task-wise solutions is piecewise-linear in the task parameter. We use the parametric
programming technique [6, 7, 8, 9] for computing those piecewise linear solutions.



Notations: Let us denote bR, R, andRR, , the set of real, nonnegative, and positive numbers,
respectively, while we defind,, := {1,...,n} for every natural numbet. We denote bys? , the
set ofd x d positive definite matrices, and I&f-) be the indicator function.

2 Review of Multi-Task Learning (MTL)

In this section, we review an MTL method developed in [1, 2]. Lét;,y;)}icn, be the set of
n training instances, wherg; € X C R? is the input andy; € ) is the output. We define
w;(t) € [0,1],¢ € N as the weight of thé'" instance for the'® task, whereT" is the number
of tasks. We consider an affine modglz) = 8,0 + B/ = for each task, wherg; o € R and

B, € R%. For notational simplicity, we define augmented veci@rs= (Bo, Brs -+, Ba) T € R
andz := (1,zy,...,24)" € R¥!, and write the affine model g&(z) = 3, z.
The multi-task feature learning method discussed in [1] is formulated as
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wheretr(D) is the trace ofD, ¢; : R — R, is the loss function for the'® task incurred on the

residualr(y;, B, #;)%, andy > 0 is the regularization parameteit was shown [1] that the problem
(1) is equivalent to

min ST wit)(r(y B E0) + 1B,

{Bihienr eng ieNy

where B is the d x T matrix whoset'" column is given by the vectoB;, and ||B||;. :=
tr((BBT)'/2) is thetrace normof B. As shown in [10], the trace norm is the convex upper envelope

of the rank of B, and (1) can be interpreted as the problem of finding a common feature subspace
across! tasks. This problem is often referred toraslti-task feature learninglf the matrix D is
restricted to be diagonal, the formulation (1) is reducenshtdti-task variable selectiofil, 12].

In order to solve the problem (1), tizdternating minimization algorithmvas suggested in [1] (see
Algorithm 1). This algorithm alternately optimizes the task-wise solutighig cn,. and the com-
mon representation matri¥. It is worth noting that, whem is fixed, eactB; can be independently

optimized (Step 1). On the other hand, Wr{e’i‘{}teNT are fixed, the optimization of the matrix
can be reduced to the minimization ovkeigenvalues,, . .., \; of the matrixC := BB, and the
optimal D can be analytically computed (Step 2).

3 Parametric-Task Learning (PTL)

We consider the case where we have infinitely many tasks parametrized by a single continuous
parameter. Lef € [Ay, fy] be a continuous task parameter. Instead of the set of weiglts ¢ €
Nz, we consider a weight functiow; : [0y,,0y] — [0, 1] for each instanceé € N,,. In PTL, we

learn a parameter vect@y € R%+! as a continuous function of the task paraméter
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where, note that, the loss functiéf possibly depends ofh

As we will explain in the next section, the above PTL formulation is useful in various important
machine learning scenarios including learning under non-stationarity, cost-sensitive learning, and

'For exampler(y:, B¢ &:) = (y; — 3" ;) for regression problems withy € R, while r(y:, 8, &:) =
1 — ;8¢ @ for binary classification problems with € {—1, 1}.

2In [1], wy(t) takes either 1 or 0. It takes 1 only if th#" instance is used in thé" task. We slightly
generalize the setup so that each instance can be used in multiple tasks with different weights.



Algorithm 1 ALTERNATING MINIMIZATION ALGORITHM FORMTL [1]
1: Input: Data{(x;, y;) }ien, and weights{w; (t)}ien,, teng;
2: Initialize: D « 1;/d (I4is d x d identity matrix)
3: while convergence condition is not trage
4: SteplFort=1,...,7do

B: + argmin Z w; ()0 (r(ys, BT &) + %,BTDflﬁ
i€N,

5. Step2

01/2 T
D ¢+ ———— =arg min Z B, D13,

tr(C)1/2 Dest (D)1 e

whereC := BBT whose(j, k)™ element is defined a&S; = ZtENT B B
6: end while _
7. Output: {B;}ten, andD;

guantile regression. However, at first glance, the PTL optimization problem (2) seems computa-
tionally intractable since we need to find infinitely many task-wise solutions as well as the common
feature subspace (or the common set of variablBsigrestricted to be diagonal) shared by infinitely
many tasks.

Our key finding is that, for a certain class of PTL problems, wheis fixed, the optimal path of the
task-wise solutiong, is shown to be piecewise-linear éh By exploiting this piecewise-linearity,

we can efficiently handle infinitely many parameterized tasks, and the optimal solutions of those
class of PTL problems can be exactly computed.

In the following theorem, we prove that the task-wise solutiBpss piecewise-linear i if the
weight functions and the loss function satisfy certain conditions.

Theorem 1 For anyd x d positive-definite matrixD € Si+, the optimal solution path of

Bo + argmin Y w;(0)le(r(y;, B %)) +v8' D' ®)

1€EN,

for 6 € [0, 0y] is written as a piecewise-linear function 6fif the residualr(y,BTi') can be

written as an affine function g8, and the weight functions; : [0r,0u] — [0,1], ¢ € N,, and the
loss functiory : R — R, satisfy either of the following conditiorfa) or (b):

(&) All the weight functions are piecewise-linear functions, and the loss function is a convex
piecewise-linear function which does not dependpn

(b) All the weight functions are piecewise-constant functions, and the loss function is a convex
piecewise-linear function which dependstbim the following form:

lo(r) = > max{(an + bpr)(ch + dnb),0}, 4)

heNg

whereH is a positive integer, and;,, by, ci,, d;, € R are constants such thaf, + d;0 > 0 for all
S [QL, GU]

In the proof in Appendix A, we show that, if the weight functions and the loss function satisfy the
conditiong(a) or (b), the problem (3) is reformulated aparametric quadratic program (parametric

QP), where the parametéronly appears in the linear term of the objective function. As shown, for
example, in [9], the optimal solution path of this class of parametric QP has a piecewise-linear form.

If By is piecewise-linear i, we can exactly compute the entire solution path by using parametric
programming. In machine learning literature, parametric programming is often used in the context



Algorithm 2 ALTERNATING MINIMIZATION ALGORITHM FORPTL
1: Input: Data{(x;,y;)}ien, and weight functions; : [0y, 6u] :— [0, 1] forall i € N,,;

2: Initialize: D « 1;/d (I4is d x d identity matrix)
3: while convergence condition is not trage
4:  Step I For all the continuum of € [0y, 6] do
Bo « argmin Y w;(0)le(r(y;, B &) +v8 D'
i€N,
by using parametric programming;
5. Step2
c1/2 Ou - .
D+ ——= i D™ Byd0, 5
B "V pes ey f, PP ©®)
where(j, k)** element ofC € R4*4 is defined a&’; j, := f:LU Bo. i Bo.1d0;
6: end while _

~

: Output: {8y} for 6 € [0, 0y] andD;

of regularization path-followind13, 14, 15§. We start from the solution & = 6, and follow
the path of the optimal solutions whiteis continuously increased. This is efficiently conducted by
exploiting the piecewise-linearity.

Our proposed algorithm for solving the PTL problem (2) is described in Algorithm 2, which is es-
sentially a continuous version of the MTL algorithm shown in Algorithm 1. Note that, by exploiting
the piecewise linearity gBy, we can compute the integral at Step 2 (Eqg. (5)) in Algorithm 2.

Algorithm 2 can be changed to parametric-task variable selection if Step 2 is replaced with

/ rOu 2
D «+ diag(\ Aq) where\ o 0%
1y---57d j =
(4
jrena \ oo 4,540

which can also be computed efficiently by exploiting the piecewise linearigy of

forall j € Ny,

4 Examples of PTL Problems
In this section, we present three examples where our PTL formulation (2) is useful.

Binary Classification Under Non-Stationarity Suppose that we obserugraining instances se-
quentially, and denote them &&r;, y;, 7;) }ien,, , Wherex; € R?, y; € {—1,1}, andr; is the time
when thei*" instance is observed. Without loss of generality, we assumethat .. < 7,,. Under
non-stationarity, if we are requested to learn a classifier to predict the output for a test iaput
served at timer, the training instances observed around tirghould have more influence on the
classifier than others.

Let w;(7) denote the weight of th&" instance when training a classifier for a test point at time
We can for example use the following triangular weight function (see Figurel):

1+s M r—7) ifr—s<7<T,

wi(t) =X 1—-sYr—7) fr<m<7+s, (6)

0 otherwise
wheres > 0 determines the width of the triangular time windows. The problem of training a
classifier for timer is then formulated as

min Y w;(7) max(0,1 -y, 8" &) + 78[5,
B ieN,

where we used the hinge loss.

3In regularization path-following, one computes the optimal solution path w.r.t. the regularization parameter,
whereas we compute the optimal solution path w.r.t. the task parateter
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Figure 1: Examples of weight functios; (1) };en,, in non-stationary time-series learning. Given a
training instanceéx;, y;) attimer; for¢ = 1,...,n under non-stationary condition, it is reasonable
to use the weight$w;(7)};cn, as shown here when we learn a classifier to predict the output of a
test input at timer.

If we have the belief that a set of classifiers for different time should have some common structure,
we can apply our PTL approach to this problem. If we consider a time inter@l[r,, 7], the
parametric-task feature learning problem is formulated as
TU
~ min / Z w;(7) max(0,1 — y; 8] &;) dr + ’y/ B! D3, dr. @)
{B(T)}TG[TL,TU] TL TL
DeSY  tr(D)<1

Note that the problem (7) satisfies the conditfajpin Theorem 1.

Joint Cost-Sensitive Learning Next, let us consider cost-sensitive binary classification. When
the costs of false positives and false negatives are unequal, or when the numbers of positive and
negative training instances are highly imbalanced, it is effective to useaftesensitive learning
approach [16]. Suppose that we are given a set of training instéfegs;) }ien, with z; € R% and

y; € {—1, 1}. If we know that the ratio of the false positive and false negative costs is approximately

6 : (1—0), itis reasonable to solve the following cost-sensitive SVM [17]:

Imn Z w;(0) max(0,1 — y:8" &) +/|8])2,

1€EN,
where the weightv; (6) is defined as
[0 if y; = 1,
wi(f) = { 10 ifyi=+1.

When the exact false positive and false negative costs in the test scenario are unknown [4], it is often
desirable to train several cost-sensitive SVMs with different valués ¢ffwe have the belief that

a set of classifiers for different cost ratios should have some common structure, we can apply our
PTL approach to this problem. If we consider an inte/at [0y,,60u], 0 < 0, < 6y < 1, the
parametric-task feature learning problem is formulated as

9U - 9U
/ S wi6) max(0,1 - yBg @) do+~ | BID'Bedd.  (8)
{ﬁe}ee 101,,6y] iEN,, oL
DeS{, tr(D)<1
The problem (8) also satisfies the conditi@) in Theorem 1. Figure 2 shows an example of joint
cost-sensitive learning applied to a toy 2D binary classification problem.

Joint Quantile Regression Given a set of training instancd$x;, ;) }ien, With z; € R? and
y; € R drawn from a joint distribution?(X,Y), quantile regressiof19] is used to estimate the

conditionalr*® quantile Y|X_ (7) as a function ofe, wherer < (0,1) and Fy | x— is the cumu-

lative distribution function of the conditional distributid®(Y'| X = «). Jointly estimating multiple
conditional quantile functions is often useful for exploring the stochastic relationship befeen
andY (see Section 5 for an example of joint quantile regression problems). Linear quantile regres-
sion along withL, regularization [20] at order € (0, 1) is formulated as

- L] ifr <o,
e 3 e =8Ta0 el o= { G S
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Figure 2: An example of joint cost-sensitive learning on 2D toy dataset (2D mfgiexpanded to
n-dimension by radial basis functions centered on eagh In each plot, the decision boundaries

of five cost-sensitive SVMg(= 0.1,0.25,0.5,0.75,0.9) are shown. (a) Left plot is the results ob-
tained by independently training each cost-sensitive SVMs. (b) Right plot is the results obtained by
jointly training infinitely many cost-sensitive SVMs for all the continuumgaf [0.05, 0.95] using

the methodology we present in this paper (both are trained with the same regularization parameter
~). When independently trained, the inter-relationship among different cost-sensitive SVMs looks
inconsistent (c.f., [18]).

If we have the belief that a family of quantile regressions at variogs(0, 1) have some common
structure, we can apply our PTL framework to joint estimation of the family of quantile regressions
This PTL problem satisfies the conditi@m) in Theorem 1, and is written as

1 1
: T Tp-1
min (i — BT wi)dr + / BT DB, dr,
{B+}re,1) /0 Z pr ) 7 0
DeS{, tr(D)<1

where we do not need any weighting and omjtr) = 1 for all i € N,, andr € [0, 1].

5 Numerical lllustrations

In this section, we illustrate various aspects of PTL with the three examples discussed in the previous
section.

Artificial Example for Learning under Non-stationarity ~ We first consider a simple artificial
problem with non-stationarity, where the data generating mechanism gradually changes. We assume
that our data generating mechanism produces the traininf(sety;, 7;) }ien,, With n = 100 as

follows. For eachr; € {0,12%,22% .. (n—1)22}, the outputy; is first determined ag; = 1if i
is odd, whiley; = —1if i is even. Theng,; € R? is generated as
Ti1 ~ N(yl COS T;, 12), Tio ~ N(yl sin 7;, 12)7 Tij ~ ]\7(07 12),Vj S {3, R 7d}, (9)

where N (u, 02) is the normal distribution with mean and variancer?. Namely, only the first

two dimensions ofe differ in two classes, and the remaining— 2 dimensions are considered

as noise. In addition, according to the valuergfthe means of the class-wise distributions in

the first two dimensions gradually change. The data distributions of the first two dimensions for
T =0,0.57, 7, 1.57 are illustrated in Figure 3. Here, we applied our PT feature learning approach
with triangular time windows in (6) witly = 0.257. Figure 4 shows the mis-classification rate

of PT feature learningRTFL) and ordinary independent learningND) on a similarly generated

test sample with size 1000. When the input dimensloa 2, there is no advantage for learning
common features since these two input dimensions are important for classification. On the other
hand, as/ increases, PT feature learning becomes more and more advantageous. Especially when
the regularization parameteiis large, the independent learning approach is completely deteriorated
asd increases, while PTFL works reasonably well in all the setups.
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Figure 3: The first 2 input dimensions of artificial example-at 0,0.57, 7, 1.57. The class-wise
distributions in these two dimensions gradually change with|[0, 27].
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Figure 4: Experimental results on artificial example under non-stationarity. Mis-classification rate
on test sample with size 1000 for various setdps {2, 5, 10,20, 50,100} and~v € {0.1,1, 10}

are shown. The red symbols indicate the results of our PT feature leafig.) whereas the

blue symbols indicate ordinary independent learniiND). The plotted are average (and standard
deviation) over 100 replications with different random seeds. All the differences eXceftt are
statistically significant < 0.01).

Joint Cost-Sensitive SVM Learning on Benchmark Datasets Here, we report the experimental
results on joint cost-sensitive SVM learning discussed in Section 4. Although our main contribution
is not just claiming favorable generalization properties of parametric task learning solutions, we
compared, as an illustration, the generalization performances of PT feature led&mirlg) @nd

PT variable selectionRTVS with the ordinary independent learning approatiY). In PTFL
andPTVS we learned common feature subspaces and common sets of variables shared across the
continuum of cost-sensitive SVM fa € [0.05, 0.95] for 10 benchmark datasets (see Table 1). In
each data set, we divided the entire sample into training, validation, and test sets with almost equal
size. The average test errors (and the standard deviation) of 10 different data splits are reported
in Table 1. The total test errors for cost-sensitive SVMs wiithk= 0.1,0.2,...,0.9 are defined
asZee{O.lw.’O.g}(e Sigie 1 L(fo(ms) > 0) + (1= 0)3,., _) I(fo(z:) < 0)), where f, is the

trained SVM with the cost ratié. Model selection was conducted by using the same criterion on
validation sets. We see that, in most ca$®Bi-L or PTVShad better generalization performance
thanIND.

Joint Quantile Regression Finally, we applied PT feature learning to joint quantile regression
problems. Here, we took a slightly different approach from what was described in the previous
section. Given a training sé¢fx;, v;) }icn,, . we first estimated conditional mean functibfy’| X =

x| by least-square regression, and computed the resigual y; — E[Y|X = x;], whereF is the
estimated conditional mean function. Then, we applied PT feature learnif{ector;) }ien,,, and
estimated the conditionaf® quantile function ag’, 'y, (7) := E[Y|X = @]+ fres(a|7), where

fres(-|7) is the estimated" quantile regression fitted to the residuals.

When multiple quantile regressions with differemstare independently learned, we often encounter

a notorious problem known aslantile crossingsee Section 2.5 in [5]). For example, in Figure 5(a),
some of the estimated conditional quantile functiorssseach other (which never happens in the
true conditional quantile functions). One possible approach to mitigate this problem is to assume
a model on the heteroscedastic structure. In the simplest case, if we assume that thdalata is
moscedasti¢i.e., the conditional distributio®®(Y |«) does not depend om except its location),



Table 1: Average (and standard deviation) of test errors obtained by joint cost-sensitive SVMs on
benchmark datasets. is the sample size] is the input dimensionind indicates the results when
each cost-sensitive SVM was trained independently, WwhilEL andPTVSindicate the results from
PT feature learning and PT feature selection, respectively. The bold numbers in the table indicate

the best performance among three methods.

Data Name n d Ind PTFL PTVS

Parkinson 195 | 20 || 32.30(10.60) | 30.21 (9.09) 30.25 (8.53)

Breast Cancer Diagnostic 569 | 30 20.36 (7.77) 18.49 (6.15) 19.46 (5.89)

Breast Cancer Prognostic 194 | 33 | 48.97 (12.92) | 49.28(9.83) | 48.68 (5.89)
Australian 690 | 14 || 117.97 (22.97)| 106.25 (12.66)| 111.22 (15.95)
Diabetes 768 | 8 || 185.90(21.13)| 179.89 (16.31)| 175.95 (16.26)
Fourclass 862 | 2 | 181.69 (22.13)| 179.30 (14.25)| 178.67 (19.24)
Germen 1000 | 24 || 242.21 (18.35)| 219.66 (16.22)| 237.20 (15.78)
Splice 1000 | 60 || 179.80 (24.22)| 151.69 (18.02)| 183.54 (21.27)
SVM Guide 300 | 10 || 175.70(15.55)| 170.16 (9.99) | 179.76 (14.76)
DVowel 528 | 10 || 175.16 (13.78)| 175.74(9.37)| 175.50 (7.38)

guantile regressions at different can be obtained by just vertically shifting other quantile regres-
sion function (see Figure 5(f)).

Our PT feature learning approach, when applied to the joint quantile regression problem, allows us
to interpolatethese two extreme cases. Figure 5 shows a joint QR example on the bone mineral
density (BMD) data [21]. We applied our approach after expanding univariate infjuad = 5
dimensional vector by using evenly allocated RBFs. Wheny(a) 0, our approach is identical

with independently estimating each quantile regression, while it coincides with homoscedastic case
when (f)y — oo. In our experience, the best solution is usually found somewhere between these
two extremes: in this example, (¢)= 5 was chosen as the best model by 10-fold cross-validation.

o o5 o o5
(Standardized) Age (Standardized) Age

(d)vy=5
Figure 5: Joint quantile regression examples on BMD data [21] for six differgnt

(Standardized) Age

(e)y=10 M y— o0

6 Conclusions

In this paper, we introduced parametric-task learning (PTL) approach that can systematically handle
infinitely many tasks parameterized by a continuous parameter. We illustrated the usefulness of this
approach by providing three examples that can be naturally formulated as PTL. We believe that there
are many other practical problems that falls into this PTL framework.
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Appendix A: Proof of Theorem 1

First, we prove the claim for the conditida). Let us divide the intervgby,, fy] into finite number
of segments so that, within each segment, the weight veetéy := (w1 (6), ..., w,(0))" € [0,1]"
changes linearly witl#, and denote the breakpoints of those segmentg as 6y < 6; < ... <
0s < ... < 0s =0y, whereS is the number of those segments.

Then, consider a segment defined®® [0;,0:41], s € {0,...,5 — 1}, and denote the weight
vectors a¥l; andfd,;, asw(f,) andw(fs1), respectively. The problem of computing the solution
path within this segment is written as the following parametric optimization problem

B, « argmin Z (1 — w)wi(0s) + pwi(Os41))(1—pyootposs (r(yi, BT #:)) +7B8 DB
1€EN,,
(10)

for pn € [0, 1].

Since the loss functiofy does not depend ahand is convex piecewise-linearinwe can write/y
as

Co(r(ys, BTa:)) = Y max{din + Vi - r(yi, BT &)},
heNgy

whereg;,,, vin € R, (i, h) € N, xNy are constants, and is the number of pieces of the piecewise-
linear loss functiorty (see, for example, section 4.3.1 of [22]).

Using slack variableg = (&1,...,&,) € R™, the parametric programming problem in (10) is
rewritten as

{Bu. €.} « arglgiél (1 = pw(0s) + pw(0s41)) "€ +98 DB

s.t. & > Gin + in - r(yi, BT 2;) forall (i,h) € N, x Ny (11)

with respect tqu € [0, 1]. The problem (11) belongs to the clasgafametric QP(note that, when

u is fixed, the problem (11) is quadratic program with respegs tand &, which has a quadratic
objective function and a set of linear constraints.). As shown, for example, in [6, 9], a parametric
guadratic program which contains the parametgrii§ the linear term of the quadratic objective
function are shown to have a solution path in piecewise-linear form.

Similarly for the condition(b), we consider a segment definedta [6;, 0511], s € {0,...,S—1},
in which the weight vectotw(6) is constant (and thus omitted hereafter). Using slack varighles
for: € N,, andh € Ny

min Y > max{(an + by - r(yi, BT &) (ch + dib),0} + 78T DB

1€N,, heNg
< min Z (cn + dnb) Z max{(an + b, - (y;, 8" &)),0} + 3" D73
B heNy iEN,

< min Z (ch + dpb) Z &n+8 DB

B Loy i€N,
st &n > ap +bp (Y, BT &), & >0V (4,h) € N, x Ny
The parametric programming problem in Theorefiv)lis thus written as

{Bo, &} < min > (ch+dn) > &in+78 DB

£ heNg ieN,,
st. & > an+ by - r(ys, BT &), & >0V (i,h) € N, x Ny

for 6 € [05,0s11], and it also belongs to parametric QP, meaning that the optimal solution path is
shown to be piecewise linear éh O
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