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Abstract

We introduce an extended formulation of multi-task learning (MTL) calledpara-
metric task learning (PTL)that can systematically handle infinitely many tasks
parameterized by a continuous parameter. Our key finding is that, for a certain
class of PTL problems, the path of the optimal task-wise solutions can be repre-
sented as piecewise-linear functions of the continuous task parameter. Based on
this fact, we employ a parametric programming technique to obtain the common
shared representation across all the continuously parameterized tasks. We show
that our PTL formulation is useful in various scenarios such as learning under
non-stationarity, cost-sensitive learning, and quantile regression. We demonstrate
the advantage of our approach in these scenarios.

1 Introduction

Multi-task learning (MTL) has been studied for learning multiple related tasks simultaneously. A
key assumption behind MTL is that there exists a common shared representation across the tasks.
Many MTL algorithms attempt to find such a common representation and at the same time to learn
multiple tasks under that shared representation. For example, we can enforce all the tasks to share a
common feature subspace or a common set of variables by using an algorithm introduced in [1, 2]
that alternately optimizes the shared representation and the task-wise solutions.

Although the standard MTL formulation can handle only a finite number of tasks, it is sometimes
more natural to consider infinitely many tasks parameterized by a continuous parameter, e.g., in
learning under non-stationarity[3] where learning problems change over continuous time,cost-
sensitive learning[4] where loss functions are asymmetric with continuous cost balance, andquan-
tile regression[5] where the quantile is a continuous variable between zero and one. In order to
handle these infinitely many parametrized tasks, we propose in this paper an extended formulation
of MTL calledparametric-task learning (PTL).

The key contribution of this paper is to show that, for a certain class of PTL problems, the optimal
common representation shared across infinitely many parameterized tasks can be obtainable. Specif-
ically, we develop an alternating minimization algorithmà la [1, 2] for finding the entire continuum
of solutions and the common feature subspace (or the common set of variables) among infinitely
many parameterized tasks. Our algorithm exploits the fact that, for those classes of PTL problems,
the path of task-wise solutions is piecewise-linear in the task parameter. We use the parametric
programming technique [6, 7, 8, 9] for computing those piecewise linear solutions.
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Notations: Let us denote byR, R+, andR++ the set of real, nonnegative, and positive numbers,
respectively, while we defineNn := {1, . . . , n} for every natural numbern. We denote bySd++ the
set ofd× d positive definite matrices, and letI(·) be the indicator function.

2 Review of Multi-Task Learning (MTL)

In this section, we review an MTL method developed in [1, 2]. Let{(xi, yi)}i∈Nn be the set of
n training instances, wherexi ∈ X ⊆ Rd is the input andyi ∈ Y is the output. We define
wi(t) ∈ [0, 1], t ∈ NT as the weight of theith instance for thetth task, whereT is the number
of tasks. We consider an affine modelft(x) = βt,0 + β⊤

t x for each task, whereβt,0 ∈ R and
βt ∈ Rd. For notational simplicity, we define augmented vectorsβ̃ := (β0, β1, . . . , βd)

⊤ ∈ Rd+1

andx̃ := (1, x1, . . . , xd)
⊤ ∈ Rd+1, and write the affine model asft(x) = β̃⊤

t x̃.

The multi-task feature learning method discussed in [1] is formulated as

min
{β̃t}t∈NT

D∈Sd
++,tr(D)≤1

∑
t∈NT

∑
t∈NT

wi(t)ℓt(r(yi, β̃
⊤
t x̃i)) +

γ

T

∑
t∈NT

β⊤
t D

−1βt, (1)

wheretr(D) is the trace ofD, ℓt : R → R+ is the loss function for thetth task incurred on the
residualr(yi, β̃⊤

t x̃i)
1, andγ > 0 is the regularization parameter2. It was shown [1] that the problem

(1) is equivalent to

min
{β̃t}t∈NT

∑
t∈NT

∑
i∈NN

wi(t)ℓt(r(yi, β̃
⊤
t x̃i)) +

γ

T
||B||2tr,

whereB is the d × T matrix whosetth column is given by the vectorβt, and ||B||tr :=
tr((BB⊤)1/2) is thetrace normofB. As shown in [10], the trace norm is the convex upper envelope
of the rank ofB, and (1) can be interpreted as the problem of finding a common feature subspace
acrossT tasks. This problem is often referred to asmulti-task feature learning. If the matrixD is
restricted to be diagonal, the formulation (1) is reduced tomulti-task variable selection[11, 12].

In order to solve the problem (1), thealternating minimization algorithmwas suggested in [1] (see
Algorithm 1). This algorithm alternately optimizes the task-wise solutions{β̃t}t∈NT

and the com-
mon representation matrixD. It is worth noting that, whenD is fixed, each̃βt can be independently
optimized (Step 1). On the other hand, when{β̃t}t∈NT

are fixed, the optimization of the matrixD
can be reduced to the minimization overd eigenvaluesλ1, . . . , λd of the matrixC := BB⊤, and the
optimalD can be analytically computed (Step 2).

3 Parametric-Task Learning (PTL)

We consider the case where we have infinitely many tasks parametrized by a single continuous
parameter. Letθ ∈ [θL, θU] be a continuous task parameter. Instead of the set of weightswi(t), t ∈
NT , we consider a weight functionwi : [θL, θU] → [0, 1] for each instancei ∈ Nn. In PTL, we
learn a parameter vector̃βθ ∈ Rd+1 as a continuous function of the task parameterθ:

min
{β̃θ}θ∈[θL,θU]

D∈Sd
++,tr(D)≤1

∫ θU

θL

∑
i∈Nn

wi(θ) ℓθ(r(yi, β̃
⊤
θ x̃i)) dθ + γ

∫ θU

θL

β⊤
θ D

−1βθ dθ, (2)

where, note that, the loss functionℓθ possibly depends onθ.

As we will explain in the next section, the above PTL formulation is useful in various important
machine learning scenarios including learning under non-stationarity, cost-sensitive learning, and

1For example,r(yi, β̃⊤
t x̃i) = (yi − β̃⊤x̃i)

2 for regression problems withyi ∈ R, while r(yi, β̃
⊤
t x̃i) =

1− yiβ̃
⊤
t x̃i for binary classification problems withyi ∈ {−1, 1}.

2In [1], wi(t) takes either 1 or 0. It takes 1 only if theith instance is used in thetth task. We slightly
generalize the setup so that each instance can be used in multiple tasks with different weights.
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Algorithm 1 ALTERNATING M INIMIZATION ALGORITHM FOR MTL [1]
1: Input : Data{(xi, yi)}i∈Nn and weights{wi(t)}i∈Nn,t∈NT ;
2: Initialize : D ← Id/d (Id is d× d identity matrix)
3: while convergence condition is not truedo
4: Step 1: For t = 1, . . . , T do

β̃t ← argmin
β̃

∑
i∈Nn

wi(t)ℓt(r(yi, β̃
⊤x̃i)) +

γ

T
β⊤D−1β

5: Step 2:

D ← C1/2

tr(C)1/2
= arg min

D∈Sd
++,tr(D)≤1

∑
t∈NT

β⊤
t D

−1βt,

whereC := BB⊤ whose(j, k)th element is defined asCj,k :=
∑

t∈NT
βtjβtk.

6: end while
7: Output : {β̃t}t∈NT

andD;

quantile regression. However, at first glance, the PTL optimization problem (2) seems computa-
tionally intractable since we need to find infinitely many task-wise solutions as well as the common
feature subspace (or the common set of variables ifD is restricted to be diagonal) shared by infinitely
many tasks.

Our key finding is that, for a certain class of PTL problems, whenD is fixed, the optimal path of the
task-wise solutions̃βθ is shown to be piecewise-linear inθ. By exploiting this piecewise-linearity,
we can efficiently handle infinitely many parameterized tasks, and the optimal solutions of those
class of PTL problems can be exactly computed.

In the following theorem, we prove that the task-wise solutionsβ̃θ is piecewise-linear inθ if the
weight functions and the loss function satisfy certain conditions.

Theorem 1 For anyd× d positive-definite matrixD ∈ Sd++, the optimal solution path of

β̃θ ← argmin
β̃

∑
i∈Nn

wi(θ)ℓθ(r(yi, β̃
⊤x̃i)) + γβ⊤D−1β (3)

for θ ∈ [θL, θU] is written as a piecewise-linear function ofθ if the residualr(y, β̃⊤x̃) can be
written as an affine function of̃β, and the weight functionswi : [θL, θU] → [0, 1], i ∈ Nn and the
loss functionℓ : R→ R+ satisfy either of the following conditions(a) or (b):

(a) All the weight functions are piecewise-linear functions, and the loss function is a convex
piecewise-linear function which does not depend onθ;

(b) All the weight functions are piecewise-constant functions, and the loss function is a convex
piecewise-linear function which depends onθ in the following form:

ℓθ(r) =
∑

h∈NH

max{(ah + bhr)(ch + dhθ), 0}, (4)

whereH is a positive integer, andah, bh, ch, dh ∈ R are constants such thatch + dhθ ≥ 0 for all
θ ∈ [θL, θU].

In the proof in Appendix A, we show that, if the weight functions and the loss function satisfy the
conditions(a) or (b), the problem (3) is reformulated as aparametric quadratic program (parametric
QP), where the parameterθ only appears in the linear term of the objective function. As shown, for
example, in [9], the optimal solution path of this class of parametric QP has a piecewise-linear form.

If β̃θ is piecewise-linear inθ, we can exactly compute the entire solution path by using parametric
programming. In machine learning literature, parametric programming is often used in the context
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Algorithm 2 ALTERNATING M INIMIZATION ALGORITHM FOR PTL
1: Input: Data{(xi, yi)}i∈Nn and weight functionswi : [θL, θU] :→ [0, 1] for all i ∈ Nn;
2: Initialize : D ← Id/d (Id is d× d identity matrix)
3: while convergence condition is not truedo
4: Step 1: For all the continuum ofθ ∈ [θL, θU] do

β̃θ ← argmin
β̃

∑
i∈Nn

wi(θ)ℓθ(r(yi, β̃
⊤x̃i)) + γβ⊤D−1β

by using parametric programming;
5: Step 2:

D ← C1/2

tr(C)1/2
= arg min

D∈Sd
++,tr(D)≤1

∫ θU

θL

β⊤
θ D

−1βθdθ, (5)

where(j, k)th element ofC ∈ Rd×d is defined asCj,k :=
∫ θU
θL

βθ,jβθ,kdθ;
6: end while
7: Output: {β̃θ} for θ ∈ [θL, θU] andD;

of regularization path-following[13, 14, 15]3. We start from the solution atθ = θL, and follow
the path of the optimal solutions whileθ is continuously increased. This is efficiently conducted by
exploiting the piecewise-linearity.

Our proposed algorithm for solving the PTL problem (2) is described in Algorithm 2, which is es-
sentially a continuous version of the MTL algorithm shown in Algorithm 1. Note that, by exploiting
the piecewise linearity ofβθ, we can compute the integral at Step 2 (Eq. (5)) in Algorithm 2.

Algorithm 2 can be changed to parametric-task variable selection if Step 2 is replaced with

D ← diag(λ1, . . . , λd) whereλj =

√∫ θU
θL

β2
θ,jdθ∑

j′∈Nd

√∫ θU
θL

β2
θ,j′dθ

for all j ∈ Nd,

which can also be computed efficiently by exploiting the piecewise linearity ofβθ.

4 Examples of PTL Problems

In this section, we present three examples where our PTL formulation (2) is useful.

Binary Classification Under Non-Stationarity Suppose that we observen training instances se-
quentially, and denote them as{(xi, yi, τi)}i∈Nn , wherexi ∈ Rd, yi ∈ {−1, 1}, andτi is the time
when theith instance is observed. Without loss of generality, we assume thatτ1 < . . . < τn. Under
non-stationarity, if we are requested to learn a classifier to predict the output for a test inputx ob-
served at timeτ , the training instances observed around timeτ should have more influence on the
classifier than others.

Let wi(τ) denote the weight of theith instance when training a classifier for a test point at timeτ .
We can for example use the following triangular weight function (see Figure1):

wi(τ) =

 1 + s−1(τi − τ) if τ − s ≤ τi < τ,
1− s−1(τi − τ) if τ ≤ τi < τ + s,
0 otherwise,

(6)

wheres > 0 determines the width of the triangular time windows. The problem of training a
classifier for timeτ is then formulated as

min
β̃

∑
i∈Nn

wi(τ)max(0, 1− yiβ̃⊤x̃i) + γ||β||22,

where we used the hinge loss.
3In regularization path-following, one computes the optimal solution path w.r.t. the regularization parameter,

whereas we compute the optimal solution path w.r.t. the task parameterθ.
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Figure 1: Examples of weight functions{wi(τ)}i∈Nn
in non-stationary time-series learning. Given a

training instances(xi, yi) at timeτi for i = 1, . . . , n under non-stationary condition, it is reasonable
to use the weights{wi(τ)}i∈Nn as shown here when we learn a classifier to predict the output of a
test input at timeτ .

If we have the belief that a set of classifiers for different time should have some common structure,
we can apply our PTL approach to this problem. If we consider a time intervalτ ∈ [τL, τU], the
parametric-task feature learning problem is formulated as

min
{β̃(τ)}τ∈[τL,τU]

D∈Sd
++,tr(D)≤1

∫ τU

τL

∑
i∈Nn

wi(τ) max(0, 1− yiβ̃⊤
τ x̃i) dτ + γ

∫ τU

τL

β⊤
τ D

−1βτ dτ. (7)

Note that the problem (7) satisfies the condition(a) in Theorem 1.

Joint Cost-Sensitive Learning Next, let us consider cost-sensitive binary classification. When
the costs of false positives and false negatives are unequal, or when the numbers of positive and
negative training instances are highly imbalanced, it is effective to use thecost-sensitive learning
approach [16]. Suppose that we are given a set of training instances{(xi, yi)}i∈Nn withxi ∈ Rd and
yi ∈ {−1, 1}. If we know that the ratio of the false positive and false negative costs is approximately
θ : (1− θ), it is reasonable to solve the following cost-sensitive SVM [17]:

min
β̃

∑
i∈Nn

wi(θ)max(0, 1− yiβ̃⊤x̃i) + γ||β||22,

where the weightwi(θ) is defined as

wi(θ) =

{
θ if yi = −1,
1− θ if yi = +1.

When the exact false positive and false negative costs in the test scenario are unknown [4], it is often
desirable to train several cost-sensitive SVMs with different values ofθ. If we have the belief that
a set of classifiers for different cost ratios should have some common structure, we can apply our
PTL approach to this problem. If we consider an intervalθ ∈ [θL, θU], 0 < θL < θU < 1, the
parametric-task feature learning problem is formulated as

min
{β̃θ}θ∈[θL,θU]

D∈Sd
++,tr(D)≤1

∫ θU

θL

∑
i∈Nn

wi(θ) max(0, 1− yiβ̃⊤
θ x̃i) dθ + γ

∫ θU

θL

β⊤
θ D

−1βθ dθ. (8)

The problem (8) also satisfies the condition(a) in Theorem 1. Figure 2 shows an example of joint
cost-sensitive learning applied to a toy 2D binary classification problem.

Joint Quantile Regression Given a set of training instances{(xi, yi)}i∈Nn with xi ∈ Rd and
yi ∈ R drawn from a joint distributionP (X, Y ), quantile regression[19] is used to estimate the
conditionalτ th quantileF−1

Y |X=x(τ) as a function ofx, whereτ ∈ (0, 1) andFY |X=x is the cumu-
lative distribution function of the conditional distributionP (Y |X = x). Jointly estimating multiple
conditional quantile functions is often useful for exploring the stochastic relationship betweenX
andY (see Section 5 for an example of joint quantile regression problems). Linear quantile regres-
sion along withL2 regularization [20] at orderτ ∈ (0, 1) is formulated as

min
β̃

∑
i∈Nn

ρτ (yi − β̃⊤x̃i) + γ||β||22, ρτ (r) :=

{
(1− τ)|r| if r ≤ 0,
τ |r| if r > 0.

5
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(a) Independent cost-sensitive learning (b) Joint cost-sensitive learning

Figure 2: An example of joint cost-sensitive learning on 2D toy dataset (2D inputx is expanded to
n-dimension by radial basis functions centered on eachxi). In each plot, the decision boundaries
of five cost-sensitive SVMs (θ = 0.1, 0.25, 0.5, 0.75, 0.9) are shown. (a) Left plot is the results ob-
tained by independently training each cost-sensitive SVMs. (b) Right plot is the results obtained by
jointly training infinitely many cost-sensitive SVMs for all the continuum ofθ ∈ [0.05, 0.95] using
the methodology we present in this paper (both are trained with the same regularization parameter
γ). When independently trained, the inter-relationship among different cost-sensitive SVMs looks
inconsistent (c.f., [18]).

If we have the belief that a family of quantile regressions at variousτ ∈ (0, 1) have some common
structure, we can apply our PTL framework to joint estimation of the family of quantile regressions
This PTL problem satisfies the condition(b) in Theorem 1, and is written as

min
{βτ}τ∈(0,1)

D∈Sd
++,tr(D)≤1

∫ 1

0

∑
i∈Nn

ρτ (yi − β⊤
τ xi)dτ + γ

∫ 1

0

β⊤
τ D

−1βτdτ,

where we do not need any weighting and omitwi(τ) = 1 for all i ∈ Nn andτ ∈ [0, 1].

5 Numerical Illustrations

In this section, we illustrate various aspects of PTL with the three examples discussed in the previous
section.

Artificial Example for Learning under Non-stationarity We first consider a simple artificial
problem with non-stationarity, where the data generating mechanism gradually changes. We assume
that our data generating mechanism produces the training set{(xi, yi, τi)}i∈Nn with n = 100 as
follows. For eachτi ∈ {0, 1 2π

n , 2
2π
n , . . . , (n− 1) 2πn }, the outputyi is first determined asyi = 1 if i

is odd, whileyi = −1 if i is even. Then,xi ∈ Rd is generated as

xi1 ∼ N(yi cos τi, 1
2), xi2 ∼ N(yi sin τi, 1

2), xij ∼ N(0, 12), ∀j ∈ {3, . . . , d}, (9)

whereN(µ, σ2) is the normal distribution with meanµ and varianceσ2. Namely, only the first
two dimensions ofx differ in two classes, and the remainingd − 2 dimensions are considered
as noise. In addition, according to the value ofτi, the means of the class-wise distributions in
the first two dimensions gradually change. The data distributions of the first two dimensions for
τ = 0, 0.5π, π, 1.5π are illustrated in Figure 3. Here, we applied our PT feature learning approach
with triangular time windows in (6) withs = 0.25π. Figure 4 shows the mis-classification rate
of PT feature learning (PTFL) and ordinary independent learning (IND) on a similarly generated
test sample with size 1000. When the input dimensiond = 2, there is no advantage for learning
common features since these two input dimensions are important for classification. On the other
hand, asd increases, PT feature learning becomes more and more advantageous. Especially when
the regularization parameterγ is large, the independent learning approach is completely deteriorated
asd increases, while PTFL works reasonably well in all the setups.
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Figure 3: The first 2 input dimensions of artificial example atτ = 0, 0.5π, π, 1.5π. The class-wise
distributions in these two dimensions gradually change withτ ∈ [0, 2π].
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Figure 4: Experimental results on artificial example under non-stationarity. Mis-classification rate
on test sample with size 1000 for various setupsd ∈ {2, 5, 10, 20, 50, 100} andγ ∈ {0.1, 1, 10}
are shown. The red symbols indicate the results of our PT feature learning (PTFL) whereas the
blue symbols indicate ordinary independent learning (IND). The plotted are average (and standard
deviation) over 100 replications with different random seeds. All the differences exceptd = 2 are
statistically significant (p < 0.01).

Joint Cost-Sensitive SVM Learning on Benchmark Datasets Here, we report the experimental
results on joint cost-sensitive SVM learning discussed in Section 4. Although our main contribution
is not just claiming favorable generalization properties of parametric task learning solutions, we
compared, as an illustration, the generalization performances of PT feature learning (PTFL) and
PT variable selection (PTVS) with the ordinary independent learning approach (IND). In PTFL
andPTVS, we learned common feature subspaces and common sets of variables shared across the
continuum of cost-sensitive SVM forθ ∈ [0.05, 0.95] for 10 benchmark datasets (see Table 1). In
each data set, we divided the entire sample into training, validation, and test sets with almost equal
size. The average test errors (and the standard deviation) of 10 different data splits are reported
in Table 1. The total test errors for cost-sensitive SVMs withθ = 0.1, 0.2, . . . , 0.9 are defined
as

∑
θ∈{0.1,...,0.9}

(
θ
∑

i:yi=−1 I(fθ(xi) > 0) + (1 − θ)
∑

i:yi=1 I(fθ(xi) ≤ 0)
)
, wherefθ is the

trained SVM with the cost ratioθ. Model selection was conducted by using the same criterion on
validation sets. We see that, in most cases,PTFL or PTVShad better generalization performance
thanIND.

Joint Quantile Regression Finally, we applied PT feature learning to joint quantile regression
problems. Here, we took a slightly different approach from what was described in the previous
section. Given a training set{(xi, yi)}i∈Nn , we first estimated conditional mean functionE[Y |X =

x] by least-square regression, and computed the residualri := yi − Ê[Y |X = xi], whereÊ is the
estimated conditional mean function. Then, we applied PT feature learning to{(xi, ri)}i∈Nn , and
estimated the conditionalτ th quantile function aŝF−1

Y |X=x(τ) := Ê[Y |X = xi]+ f̂res(x|τ), where

f̂res(·|τ) is the estimatedτ th quantile regression fitted to the residuals.

When multiple quantile regressions with differentτs are independently learned, we often encounter
a notorious problem known asquantile crossing(see Section 2.5 in [5]). For example, in Figure 5(a),
some of the estimated conditional quantile functionscrosseach other (which never happens in the
true conditional quantile functions). One possible approach to mitigate this problem is to assume
a model on the heteroscedastic structure. In the simplest case, if we assume that the data isho-
moscedastic(i.e., the conditional distributionP (Y |x) does not depend onx except its location),

7



Table 1: Average (and standard deviation) of test errors obtained by joint cost-sensitive SVMs on
benchmark datasets.n is the sample size,d is the input dimension,Ind indicates the results when
each cost-sensitive SVM was trained independently, whilePTFL andPTVSindicate the results from
PT feature learning and PT feature selection, respectively. The bold numbers in the table indicate
the best performance among three methods.

Data Name n d Ind PTFL PTVS
Parkinson 195 20 32.30 (10.60) 30.21 (9.09) 30.25 (8.53)

Breast Cancer Diagnostic 569 30 20.36 (7.77) 18.49 (6.15) 19.46 (5.89)
Breast Cancer Prognostic 194 33 48.97 (12.92) 49.28 ( 9.83) 48.68 (5.89)

Australian 690 14 117.97 (22.97) 106.25 (12.66) 111.22 (15.95)
Diabetes 768 8 185.90 (21.13) 179.89 (16.31) 175.95 (16.26)
Fourclass 862 2 181.69 (22.13) 179.30 (14.25) 178.67 (19.24)
Germen 1000 24 242.21 (18.35) 219.66 (16.22) 237.20 (15.78)
Splice 1000 60 179.80 (24.22) 151.69 (18.02) 183.54 (21.27)

SVM Guide 300 10 175.70 (15.55) 170.16 (9.99) 179.76 (14.76)
DVowel 528 10 175.16 (13.78) 175.74 (9.37) 175.50 (7.38)

quantile regressions at differentτs can be obtained by just vertically shifting other quantile regres-
sion function (see Figure 5(f)).

Our PT feature learning approach, when applied to the joint quantile regression problem, allows us
to interpolatethese two extreme cases. Figure 5 shows a joint QR example on the bone mineral
density (BMD) data [21]. We applied our approach after expanding univariate inputx to ad = 5
dimensional vector by using evenly allocated RBFs. When (a)γ → 0, our approach is identical
with independently estimating each quantile regression, while it coincides with homoscedastic case
when (f)γ → ∞. In our experience, the best solution is usually found somewhere between these
two extremes: in this example, (d)γ = 5 was chosen as the best model by 10-fold cross-validation.
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Figure 5: Joint quantile regression examples on BMD data [21] for six differentγs.

6 Conclusions

In this paper, we introduced parametric-task learning (PTL) approach that can systematically handle
infinitely many tasks parameterized by a continuous parameter. We illustrated the usefulness of this
approach by providing three examples that can be naturally formulated as PTL. We believe that there
are many other practical problems that falls into this PTL framework.
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Appendix A: Proof of Theorem 1

First, we prove the claim for the condition(a). Let us divide the interval[θL, θU] into finite number
of segments so that, within each segment, the weight vectorw(θ) := (w1(θ), . . . , wn(θ))

⊤ ∈ [0, 1]n

changes linearly withθ, and denote the breakpoints of those segments asθL = θ0 < θ1 < . . . <
θs < . . . < θS = θU, whereS is the number of those segments.

Then, consider a segment defined onθ ∈ [θs, θs+1], s ∈ {0, . . . , S − 1}, and denote the weight
vectors atθs andθs+1 asw(θs) andw(θs+1), respectively. The problem of computing the solution
path within this segment is written as the following parametric optimization problem

β̃µ ← argmin
β̃

∑
i∈Nn

((1− µ)wi(θs) + µwi(θs+1))ℓ(1−µ)θs+µθs+1
(r(yi, β̃

⊤x̃i)) + γβ⊤D−1β

(10)

for µ ∈ [0, 1].

Since the loss functionℓθ does not depend onθ and is convex piecewise-linear inr, we can writeℓθ
as

ℓθ(r(yi, β̃
⊤x̃i)) =

∑
h∈NH

max{ϕih + ψih · r(yi, β̃⊤x̃i)},

whereϕih, ψih ∈ R, (i, h) ∈ Nn×NH are constants, andH is the number of pieces of the piecewise-
linear loss functionℓθ (see, for example, section 4.3.1 of [22]).

Using slack variablesξ = (ξ1, . . . , ξn) ∈ Rn, the parametric programming problem in (10) is
rewritten as

{β̃µ, ξµ} ← argmin
β̃,ξ

((1− µ)w(θs) + µw(θs+1))
⊤ξ + γβ⊤D−1β

s.t. ξi ≥ ϕih + ψih · r(yi, β̃⊤x̃i) for all (i, h) ∈ Nn × NH (11)

with respect toµ ∈ [0, 1]. The problem (11) belongs to the class ofparametric QP(note that, when
µ is fixed, the problem (11) is quadratic program with respect toβ̃ andξ, which has a quadratic
objective function and a set of linear constraints.). As shown, for example, in [6, 9], a parametric
quadratic program which contains the parameter (µ) in the linear term of the quadratic objective
function are shown to have a solution path in piecewise-linear form.

Similarly for the condition(b), we consider a segment defined onθ ∈ [θt, θs+1], s ∈ {0, . . . , S−1},
in which the weight vectorw(θ) is constant (and thus omitted hereafter). Using slack variablesξih
for i ∈ Nn andh ∈ NH

min
β̃

∑
i∈Nn

∑
h∈NH

max{(ah + bh · r(yi, β̃⊤x̃i))(ch + dhθ), 0}+ γβ⊤D−1β

⇔ min
β̃

∑
h∈NH

(ch + dhθ)
∑
i∈Nn

max{(ah + bh · r(yi, β̃⊤x̃i)), 0}+ γβ⊤D−1β

⇔ min
β̃,ξ

∑
h∈NH

(ch + dhθ)
∑
i∈Nn

ξih + γβ⊤D−1β

s.t. ξih ≥ ah + bh · r(yi, β̃⊤x̃i), ξih ≥ 0 ∀ (i, h) ∈ Nn × NH .

The parametric programming problem in Theorem 1(b) is thus written as

{β̃θ, ξθ} ← min
β̃,ξ

∑
h∈NH

(ch + dhθ)
∑
i∈Nn

ξih + γβ⊤D−1β

s.t. ξih ≥ ah + bh · r(yi, β̃⊤x̃i), ξih ≥ 0 ∀ (i, h) ∈ Nn × NH

for θ ∈ [θs, θs+1], and it also belongs to parametric QP, meaning that the optimal solution path is
shown to be piecewise linear inθ. □
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