
1IEEE Transactions on Neural Networks, vol.20, no.1, pp.35–44, 2009.

Robust Label Propagation on Multiple Networks

Tsuyoshi Kato
Center for Informational Biology, Ochanomizu University

2-1-1, Otsuka, Bunkyo, Tokyo 112-8610, Japan
kato-tsuyoshi@aist.go.jp

Hisashi Kashima
IBM Research, Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan
hkashima@jp.ibm.com

Masashi Sugiyama
Department of Computer Science, Tokyo Institute of Technology

2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
sugi@cs.titech.ac.jp

Abstract

Transductive inference on graphs such as label propagation algorithms is receiving
a lot of attention. In this paper, we address a label propagation problem on mul-
tiple networks and present a new algorithm that automatically integrates structure
information brought in by multiple networks. The proposed method is robust in
that irrelevant networks are automatically deemphasized, which is an advantage
over Tsuda et al.’s approach [1]. We also show that the proposed algorithm can be
interpreted as an EM algorithm with a Student-t prior. Finally, we demonstrate
the usefulness of our method in protein function prediction and digit classification,
and show analytically and experimentally that our algorithm is much more efficient
than existing algorithms.

Keywords

label propagation, multiple networks, EM algorithm

1 Introduction

Recently, network-structured data is becoming increasingly popular in the field of ma-
chine learning [2, 3, 1, 4, 5, 6, 7]. Network-structured data is usually represented as an
undirected graph, each of whose nodes represents an example, and each of whose edges rep-
resents a relationship between two examples. For example, in protein networks, proteins

Robust Label Propagation on Multiple Networks 2

are represented as nodes, and relationships among proteins such as physical interactions
and expression similarities are represented as edges. If we want to predict the functions
of the proteins in a network, the task is essentially formalized as a classification problem
on a network. Since we are usually given both labeled examples and unlabeled examples
prior to the training stage, the task can be handled as a semi-supervised problem or a
transduction problem ([8, 2, 9, 3, 10, 1]). Learning in such a setting is called graph-based
learning (Section 2).

A generally accepted approach to graph-based learning is label propagation [11, 3, 12,
13] (Section 3). Label propagation assumes that a pair of nodes connected by an edge
should have similar predictions, and the resultant optimization problem is easily solved
in a closed form.

Let us consider the situations where we are given multiple data sources, or multiple
networks. In the case of protein function prediction, a wide variety of data sources are
available, such as gene expression data, amino acid sequences, phylogenetic profiles, and
subcellular locations. For label propagation, we have multiple networks corresponding to
those multiple data sources. Since different data sources are likely to contain different in-
formation, we expect that effective integration of the complementary pieces of information
will enhance the predictive performance.

To integrate multiple networks, a natural choice is to take a weighted sum of the
graph Laplacians [5]. Tsuda et al. [1] proposed a method which determines the weights
automatically. However, as expected from the characteristics of support vector ma-
chines (SVMs) [14, 15, 16], their algorithm assigns large weights to networks irrelevant
to the task, where a network is irrelevant if it is not concordant with the classification
result of the scores of nodes in a network. Therefore, Tsuda et al.’s method is not robust
in a situation where noisy networks are included in the set of given networks (See also
Section 6).

In Section 4, we present a new robust transductive learning method that makes predic-
tions by integrating different networks. Similar to Tsuda et al.’s method, our algorithm
optimizes the weights in a linear combination of graph Laplacians. The advantage of our
algorithm is that the weights are chosen so that informative data sources for prediction are
automaticaly emphasized even in the presence of irrelevant networks. Section 5 justifies
our algorithm by using a probabilistic framework for emphasizing the weights of relevant
networks. Our probabilistic model employs the Student-t distribution [17], which provides
robust predictions. The probabilistic model based on the Student-t distribution can be
interpreted as a latent variable model in which the expectations of the latent variables are
naturally derived as the weights of the graph Laplacians. Accordingly, our algorithm au-
tomatically yields an integrated network with a statistically estimated linear combination.
Our algorithm is very fast. We show the fact analytically in Section 7 and experimentally
in Section 6. For evaluation of the prediction performance, we conduct experiments on
label propagation for protein function classification. The experimental results reveal that
the proposed method is promising in Section 7. The final section summarizes this study
and discusses future work.

Robust Label Propagation on Multiple Networks 3

Notation: In this paper, vectors are denoted by bold-faced lower-case letters and matri-
ces by bold-faced upper-case letters. Elements of vectors and matrices are not bold-faced.
The transposition of a matrix A is denoted by A⊤, and the inverse of A is by A−1. The
n × n identity matrix is denoted by In. The n-dimensional vector all of whose elements
are one is denoted by 1n. We use R to denote the set of real numbers, Rn to denote the
set of n-dimensional real vectors, and Rm×n to denote the set of m×n real matrices. The
set of real nonnegative numbers is denoted by R+, and the set of n-dimensional real non-
negative vectors is by Rn

+. We use Sn to denote the set of symmetric n×n matrices, Sn
+ to

denote the set of symmetric positive semi-definite n× n matrices, and Sn
++ to denote the

set of symmetric strictly positive definite n× n matrices. The symbols ≤ and ≥ are used
to denote not only the standard inequalities between scalars, but also the componentwise
inequalities between vectors.

2 Graph-based Learning Problem

Let us start with the definition of the graph-based learning problem, including two prob-
lem settings, learning from a single network and learning from multiple networks. Suppose
that we are given n examples: the first ℓ(< n) examples are labeled by y1, . . . , yℓ, where
yi ∈ {±1}. The remaining n− ℓ examples are unlabeled and we wish to predict the labels
of these unlabeled examples. For learning from a single network, we use an undirected
network over n nodes. Each node represents an example. The network is described by a
normalized symmetric adjacency matrix A ∈ Sn satisfying A1n = 1n. Every edge has a
positive weight and no edge is a self-loop (i.e. Aii = 0 for ∀i). The edge set is expressed
as

E ≡ {(i, j) |Aij > 0, i, j = 1, . . . , n}.

In this paper, we wish to perform learning from multiple networks. If the number of
networks is K, we have K adjacency matrices corresponding to the K different networks,
denoted by Ak (k = 1, . . . , K). Our setting is often said to be transductive. Typical
transductive setting has a large number of unlabeled examples and a small portion of
examples are labeled. However, we assume many examples are labeled as usual learning
settings assume. The assumption is needed for robust label propagation, as detailed later.

Graph-based learning determines the score vector f ∈ Rn from the given labels and
the link information (A in the case of a single network, and A1, . . . , AK in the case of
multiple networks). For calculating the score vector f ∈ Rn, a typical formulation is the
regularized least-squares problem.

Networks are usually constructed in two stages [2]. First, we compute the distances
among all the pairs of examples, and then determine the edges based on the distances.
From the distances, the edge set of the network is determined by finding the k-nearest
neighbors or by picking pairs with distances smaller than a threshold.

Robust Label Propagation on Multiple Networks 4

3 Existing Label Propagation Algorithm with Single

Network

In this section, we review a graph-based learning approach [3] for a single network. The
task here is to determine the score vector f ∈ Rn from the link information A and the
labels y. For calculating the score vector f ∈ Rn, the typical algorithm we consider here
solves the regularized least-squares problem defined by

f̂ ≡ argmin
f

(
βy

ℓ∑
i=1

(yi − fi)
2 + βbias

n∑
i=1

f2
i + βnet

∑
(i,j)∈E

Aij (fi − fj)
2

)

where βy, βbias and βnet are constant. If the score is greater than a threshold, then it is
classified as positive, and otherwise it is classified as negative. Using the graph Laplacian
defined by

L ≡ diag (A1n) − A,

the minimization problem can be re-written as

min
f

βy (f − y)⊤ G (f − y) + f⊤ (βbiasIn + βnetL) f (1)

where G ∈ Sn
+ is a diagonal matrix with

Gii ≡

1 if 1 ≤ i ≤ ℓ,

0 if ℓ + 1 ≤ i ≤ n,

i.e. the i-th diagonal element of G is one if the i-th node is labeled, or otherwise zero.
Therein, we have defined

y ≡ [y1, . . . , yℓ, 0, . . . , 0]⊤ ∈ Rn.

4 Robust Label Propagation Algorithm

This section presents a new algorithm for robust label propagation on multiple networks.
The task is to predict the score vector f ∈ Rn from the labels y and the network struc-
tures {Ak}K

k=1. A choice is integration of multiple networks followed by applying the
algorithm for a single network described in the previous section. A way for integration of
networks is superimposition. In order to emphasize the informative networks, we consider
weighted linear combination of K networks. Let ū ∈ RK

+ be the weights. The integrated
adjacency matrix and the integrated graph Laplacian are then respectively given by

Aint(ū) =
K∑

k=1

ūkAk

Robust Label Propagation on Multiple Networks 5

and

Lint(ū) =
K∑

k=1

ūkLk.

Once the weights are determined, we obtain scores in the same way as for the standard
label propagation:

f̂ = argmin
f

(
βy (f − y)⊤ G (f − y) + f⊤ (βbiasIn + βnetLint(ū)) f

)

=

(
G +

βbias

βy

In +
βnet

βy

Lint(ū)

)−1

Gy. (2)

How do we compute the weights? We determine the weights iteratively with the following
update rule using the current f :

ūk =
ν + n

ν + βnetf⊤Lkf
, (3)

where ν is a positive constant. In Section 5.4, we will show that the update rule is
naturally derived from an EM algorithm. Note that

f⊤Lkf =
∑

(i,j)∈Ek

A
(k)
ij (fi − fj)

2 ,

where A
(k)
ij is the (i, j)th element in Ak. If a node is likely to belong to the same class as

an adjacent node, label propagation algorithms work well. In other words, an informative
network should have the property that adjacent nodes tend to have similar predictions.
For that reason, the value of f⊤Lkf is large for a network irrelevant to the task, whereas
f⊤Lkf is small for a relevant network. Since the term f⊤Lkf is in the denominator
of Eq. (3), the weights of relevant networks become large and the weights of irrelevant
networks become small. Our algorithm is summarized as:

1: Set the initial weights ū = 1K/K.
2: repeat
3: Update the scores f using Eq. (2).
4: Update the weights ū using Eq. (3).
5: until convergence.

5 Probabilistic Interpretation

In this section, we give a probabilistic interpretation of our algorithm. We begin by
presenting a probabilistic model for label propagation with a single network, and show
that the MAP estimation coincides with the solution of the label propagation approach.
We next extend the probabilistic model to the case of integration of multiple networks

Robust Label Propagation on Multiple Networks 6

with fixed weights. We then introduce a prior distribution of the weights. Finally we
derive an EM algorithm for MAP estimation according to that probabilistic model, and
show the equivalence between the EM algorithm and the iterative algorithm described in
Section 4.

5.1 Label Progapagation with Single Network

We here give a probabilistic interpretation of label propagation with a single network.
The label propagation method can be viewed as performing MAP estimation of the score
vector f in the probabilistic model described below. The score vector f ∈ Rn is in the set
of model parameters. The observations y1, . . . , yℓ are drawn according to the Gaussian
distribution

p(yi|f) = N
(
yi ; fi,

1

βy

)
, (4)

where N (x ; m,S) is a Gaussian density function of the observation x ∈ Rn with
mean m ∈ Rn and covariance S ∈ Sn

++ defined by

N (x ; m,S) ≡ 1

(2π)n/2|S|1/2
exp

(
−1

2
(x − m)⊤ S−1 (x − m)

)
. (5)

The prior distribution of the model parameters is defined by the multivariate Gaussian
distribution

p(f) = N
(
f ; 0n, (βbiasIn + βnetL)−1

)
.

Zhu et al. [11] also use a similar prior distribution. MAP estimation finds the value of
the model parameters f which maximizes the posterior probability

p(f |y) =
p(f)

∏ℓ
i=1 p(yi|f)

p(y)
. (6)

Since the denominator of Eq. (6) is constant for maximization, MAP estimation is equiv-
alent to maximizing the following objective function

log p(f) +
ℓ∑

i=1

log p(yi|fi) = −1

2

(
βy(f − y)⊤G(f − y) + f⊤ (βbiasIn + βnetL) f

)
+ const.

We can see that the values of f at the maximum of the posterior probability function are
equal to the solution of Eq. (1). Thus the probabilistic interpretation is established.

5.2 Label Progapagation with Fixed-Weight Network Integra-
tion

We next extend the probabilistic model introduced above to the integration of multiple
networks with fixed weight ū ∈ RK

+ . A probabilistic model associated with this weighted

Robust Label Propagation on Multiple Networks 7

integration is given by the conditional probabilities in Eq. (4) and the prior

p(f) = N
(
f ; 0n, (βbiasIn + βnetLint(ū))−1

)
. (7)

Using a small constant ϵ such that ϵ > 0, we add a small positive value to the diagonal
elements of the graph Laplacian

L̃k ≡ Lk + ϵIn.

Since any graph Laplacian is positive semi-definite, the matrices L̃k are strictly positive
definite. Exploiting this feature, we change the prior as follows:

p(f) =
1

Z ′N
(
f ; 0n,

1

βbias

In

)
K∏

k=1

N
(
f ; 0n,

1

βnetūk

L̃−1
k

)
, (8)

where Z ′ is a normalizing constant. Taking the limit ϵ → 0, we can confirm Eq. (8) is
reduced to Eq. (7) (See Appendix A.). Thus we see that the prior of the model parame-
ters for the fixed weight integration of multiple networks is expressed as the product-of-
Gaussians [18]. This rearrangement facilitates development of the probabilistic version of
our robust label propagation algorithm on multiple networks.

5.3 Prior Distribution over Network Weights

We have seen the probabilistic model for label propagation with given weights. Here let
us consider the situation where the weights are unknown. We introduce a prior distri-
bution of the weights and marginalize out the random variables of the weights from the
expressions. The weights are marginalized in the probabilistic model described below, but
finally obtained as the expected values defined later in Eq. (16). We employ the Gamma
distribution for the prior of the weights. The Gamma distribution is defined by

Gamma(u; α, β) =
βα

Γ(α)
uα−1 exp(−βu)

for u ≥ 0, α ≥ 0, β ≥ 0. In the probabilistic model described here, each component of a
network in Eq. (8),

N
(
f ; 0n,

1

βnetūk

L̃−1
k

)
,

is replaced with an infinite mixture of Gaussians:∫ ∞

0
duk Gamma

(
uk;

1

2
ν,

1

2
ν
)
N
(
f ; 0n,

1

βnet

(
ukL̃k

)−1
)

(9)

where ν is a positive constant. In this model, the mixture coefficients are expressed by the
Gamma distribution, and the weights u ≡ [u1, . . . , uK]⊤ can be viewed as latent variables.
If ν is chosen to be smaller, the prior of the weights is flatter.

Robust Label Propagation on Multiple Networks 8

Our probabilistic model can be seen to employ a robust prior for the score vector.
The function in Eq. (9) is equal to the Student-t density function [17] with mean zero,
covariance β−1

netL̃
−1
k , and degree-of-freedom ν, where the density function of the Student-t

distribution is generally defined by

T (x; µ,Σ, ν) =
Γ
(

ν+n
2

)√
detΣ

(
√

πν)
n
Γ
(

ν
2

) (√
1 + ∥x − µ∥2

Σ−1/ν
)ν+n ,

with mean µ ∈ Rn, covariance Σ ∈ Sn
++, and degree-of-freedom ν ∈ R+. The Student-

t distribution has a heavier tail than Gaussian. As degree-of-freedom ν increases, the
Student-t distribution approaches Gaussian. Thus, the prior can be viewed as the product
of Student-t distributions [19] given by

p(f) =
1

Z
N
(
f ; 0n, β−1

biasIn

) K∏
k=1

T
(
f ; 0n, β−1

netL̃
−1
k , ν

)
(10)

where Z is a normalizing constant. Student-t distributions are often used for modeling
noisy data robustly [20], since heavy-tailed distributions such as Student-t distributions
are robust against outliers. The algorithm described below offers a robust tool for label
propagation, implicitly exploiting the heavy-tailed property of Student-t distributions.

5.4 EM Algorithm for MAP Estimation

We devised an EM algorithm for MAP estimation of f according to the model with the
prior in Eq. (10). We here describe the EM algorithm and show that the EM algorithm
is reduced to the iterative algorithm presented in Section 4. Given that the constants ν,
βy, βbias and βnet are determined in advance, MAP estimation finds the model parameters
which maximize the objective function:

Jlp(f) ≡ log p(f) +
ℓ∑

i=1

log p(yi|fi). (11)

From Eqs. (9) and (10), the logarithm of the prior is re-written as

log p(f) = log Z + logN
(
f ; 0n, β−1

biasIn

)
+

K∑
k=1

log
∫ ∞

0
duk hk(f , uk), (12)

where Z is a normalizing constant, and the function hk(·, ·) is defined by

hk(f , uk) ≡ Gamma
(
uk;

1

2
ν,

1

2
ν
)
N
(
f ; 0n,

1

ukβnet

L̃−1
k

)
. (13)

We introduce an arbitrary distribution q(uk) such that

q(uk) ≥ 0 and
∫ ∞

0
duk q(uk) = 1.

Robust Label Propagation on Multiple Networks 9

Using Jensen’s inequality, each component in the second term in Eq. (12) is bounded from
below as

log
∫ ∞

0
duk hk(f , uk) = log

∫ ∞

0
duk q(uk)

hk(f , uk)

q(uk)

≥
∫ ∞

0
duk q(uk) log

hk(f , uk)

q(uk)

=
∫ ∞

0
duk q(uk) log hk(f , uk) + H[q(uk)], (14)

where H[q(uk)] denotes the entropy of the distribution q(uk). The inequality holds with
equality when the density function q(uk) maximizes the lower-bound [21]. Specifically,

log
∫ ∞

0
duk hk(f , uk) =

∫ ∞

0
duk q̂(uk) log hk(f , uk) + H[q̂(uk)], (15)

where q̂(uk) is the optimal distribution. Our EM algorithm attempts to maximize the
lower-bound in Eq. (14). The EM algorithm consists in E-step and M-step: E-step com-
putes the optimal distribution q̂(uk), and M-step maximizes the logarithm of the posterior
probability with respect to the model parameters f . Note that Eq. (15) implies that the
logarithm of the posterior probability is equal to the lower-bound in M-step. Variational
analysis derives the optimal distribution q̂(uk) to be computed in E-step as

log q̂(uk) = log hk(f , uk) + const.

= −ukβnet

2
f⊤L̃kf +

n

2
log uk +

(
ν

2
− 1

)
log uk −

ν

2
uk + const.

= log Gamma
(
uk ;

ν + n

2
,

ν

2
+

βnet

2
f⊤L̃kf

)
,

where ‘const’ denotes the terms independent of uk (See Appendix B for derivation.). Let
us denote the expectation of uk over q̂(uk) by

ūk ≡
∫ ∞

0
dukq̂(uk)uk =

ν + n

ν + βnetf⊤L̃kf
. (16)

We now derive the update rule of M-step. With the help of Eqs. (11), (12), (15), and
(16), the logarithm of the posterior probability can be re-written as

Jlp(f) = −βy

2
(f − y)⊤ G (f − y) − βbias

2
∥f∥2 − βnet

2
f⊤

(
K∑

k=1

ūkL̃k

)
f + const. (17)

where ‘const’ here denotes the terms independent of f . From this expression, we can see
that ūk play the role of the weights for the linear combination of networks. Hence ūk will
now be called weights. The derivative with respect to f is expressed as

∂Jlp(f)

∂f
= −1

2
βyG (f − y) − 1

2

(
βbiasIn + βnet

K∑
k=1

ūkL̃k

)
f ,

Robust Label Propagation on Multiple Networks 10

which leads to representing the update rule for the score vector f as

f =

(
G +

βbias

βy

In +
βnet

βy

K∑
k=1

ūkL̃k

)−1

Gy. (18)

If we take the limit ϵ → 0, Eqs. (16) and (18) become Eqs. (3) and (2), respectively.
The EM algorithm is then summarized as follows:

E-step: Update ūk using Eq. (3) for k = 1, . . . , K.
M-step: Update f using Eq. (2).

The two steps are repeated until convergence. Thus the equivalence between the iterative
algorithm given in the previous section and the EM algorithm is established.

EM algorithms are guaranteed to converge to a local optimum [22], so is our algorithm.
Currently we just choose the equal weights as the initial point; we may use a multi-
point search strategy to further improve the performance, although this increases the
computational cost.

6 Related Work

Besides our algorithm, there exist several studies [2, 5, 1] on learning with multiple net-
works. Tsuda et al. [1] have proposed a label propagation algorithm. The task in their
paper is exactly the same as ours: to predict the labels of nodes from multiple networks.
We refer to their algorithm as TSS. They pose the following optimization problem:

min (f − y)⊤(f − y) + cγ + c0∥ξ∥1

wrt. f ∈ Rn, γ ∈ R, ξ ∈ RK
+

subj. to f⊤Lkf ≤ γ + ξk, k = 1, . . . , K.

The dual problem is given by

min y⊤
(
In +

∑
k

ūkLk

)−1

y

wrt. ū ∈ RK
+

subj. to ū ≤ c01k, ū⊤1K ≤ c,

where ūk is the dual variable corresponding to the inequality f⊤Lkf ≤ γ + ξk. Once the
optimal values of the dual variables are obtained, the scores are recovered by minimizing

(f − y)⊤(f − y) + f⊤Lint(ū)f (19)

with respect to the score vector f , where

Lint(ū) =
K∑

k=1

ūkLk.

Robust Label Propagation on Multiple Networks 11

Equation (19) implies that TSS also integrates networks and performs label propagation.
The dual variables are the weights of integration. In terms of this point, TSS is similar
to our label propagation algorithm. However, TSS does not assume the existence of
irrelevant networks. If we used TSS in such a situation, TSS would be confronted with a
difficulty. At the optimum, if f⊤Lkf < γ, we have ūk = 0, since the optimal ū satisfies
the Karush-Kuhn-Tucker (KKT) condition

ūk(f
⊤Lkf − γ − ξk) = 0,

as described in Tsuda et al.’s paper [1]. If f⊤Lkf = γ, then ξk is zero and the corre-
sponding dual variable can take 0 ≤ ūk ≤ c0 because of the similar reason. If f⊤Lkf > γ,
then ξk must be positive, and thereby the corresponding dual variable becomes ūk = c0.
As mentioned in Section 4, the value of f⊤Lkf of irrelevant networks tends to be large.
Therefore, TSS gives large weights ūk to irrelevant networks and deprives relevant net-
works of their weights. Hence, TSS cannot be expected to achieve good performance when
noisy networks are included.

Argyriou et al. [2] have proposed a kernel-based approach for combining different
networks. Their method is based on SDP/SVM [23], which is formulated as a semidefinite
programming problem, and which performs training of SVM and optimization of the
weights of the kernel matrices simultaneously. First, they convert each graph Laplacian
into the Laplacian kernel matrix, and then efficiently solve the optimization problem
by exploiting the sparsity of the graph Laplacians. However, their method yields an
integrated kernel matrix, not the integrated graph Laplacians. For recovering a network
from the integrated kernel matrix, we would consider a reverse procedure which computes
the inverse of the integrated kernel matrix. However, the inverse matrix is not sparse
anymore, and generally produces a fully connected network. Hence, if one wanted to
obtain the predictions as well as the integrated network, their approach could not meet
that requirement directly.

Let us discuss the computational complexity of the proposed algorithm. A Laplacian
matrix is typically sparse and the number of non-zero elements is |E| + n = O(|E|) if the
network is connected. According to Spielman and Teng’s work [24], our M-step in Eq. (2)
can be computed in O(|E|), while E-step in Eq. (3) takes in time nearly linear in |E|.
Thus the total complexity is nearly linear in |E|R where R is the number of iterations.
This is the same order as TSS. Thus our method is as computationally efficient as TSS,
while ours is more robust against noisy networks. SDP/SVM takes O(n3R) [25] so it is
generally much slower than ours. Argyriou et al.’s method becomes faster if the least
square loss is chosen and some techniques for sparse matrices are combined [26].

7 Experiments

We first illustrate the utility of our label propagation algorithm with a synthetic dataset.
We then show the performance of our algorithm with real biological data and handwritten
digits.

Robust Label Propagation on Multiple Networks 12

7.1 A Synthetic Example

The three artificial networks we used for the demonstration are depicted in
Fig. 1(a),(b),(c). Note that they have ten common nodes. We assume that the first
five nodes are the positive nodes, and the last five nodes are in the negative class. Nodes
1, 3, 6 and 8 are assumed to be labeled, and the remaining nodes are unlabeled. Most of
the edges in A1 and A2 connect nodes with the same class labels, whereas the edges in
A3 connect nodes with opposite class labels. Hence, A1 and A2 are relevant to the task,
but A3 is irrelevant.

We begin with a demonstration of label propagation individually on a single network.
The prediction results are shown in Fig. 1(d),(e),(f). For A1, nodes 2 and 7 are correctly
predicted, but nodes 4, 5, 9, 10 can not be predicted because these four have no paths to
any labeled nodes. For A2, no unlabeled nodes can be classified because of the same
reason. For A3, nodes 4, 5, 9, 10 are classified, but the predictions are wrong due
to the irrelevant edges. The results suggest that correct predictions can not be made
individually from any single network. We have to at least combine these networks for
better predictions.

Now let us see the results of label propagation on the integration of networks. Fig-
ure. 1(g) depicts the prediction results of our algorithm. All the nodes are correctly
classified. The resultant weights are ū = [2.98, 3.78, 0.53]⊤. The shading of the edges in
the figures represents the weights ūk. The weight of the third network ū3 is automat-
ically determined to be small. As a result, the labels of all of the nodes are correctly
predicted. Figure. 1(h) is the results of TSS. The values of weights produced by TSS were
ū = [4.00, 2.00, 4.00]⊤. The algorithm thus assigned a large weight to A3, which caused
poor predictions.

7.2 Protein Function Prediction

Next we performed an experiment on protein function prediction [23]. (The data set
is available from http://noble.gs.washington.edu/proj/sdp-svm/.) The task is a binary
classification problem to predict whether or not each protein is ribosomal. Out of 760
proteins in total, 92 proteins are ribosomal. We used two types of input data consisting
of the protein interaction network [27] and the gene expression data [23]. The gene
expression data was converted to a 5-nearest-neighbor network1. The two networks are
denoted by Avm and Ae, respectively. In order to test the robustness to the presence
of noise, we added two decoy networks. The decoy network Ar1 was made from Avm by
randomly shuffling the node indices. The decoy network Ar2 was made in the same way
as Ae. We tested two cases: in the first case only the two relevant networks Avm and Ae

were used for the primary input, and, in the second case all four networks were used. All
the graph Laplacians derived from these networks were normalized so that the diagonal
elements were one, and divided by the number of edges. We randomly choose 20% of the
nodes as unlabeled nodes. We performed five-fold cross validation over the labeled nodes

1We also varied the number of nearest neighbors, but similar results were obtained.

Robust Label Propagation on Multiple Networks 13

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

(a) A1 and y (b) A2 and y (c) A3 and y

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

(d) A1 and sign(f) (e) A2 and sign(f) (f) A3 and sign(f)

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

1 6

3 8

2 7

4 9

105

(g) Proposed (h) TSS (i) True Labels

Figure 1: Here we are given three networks A1, A2 and A3, as depicted in (a),(b),(c) where
up-pointing triangles, down-pointing triangles, and circles denote nodes with yi = +1,
yi = −1, and unknown label, respectively. The true class labels of nodes are depicted in
(i). (d),(e),(f) are the prediction results of label propagation on an individual network.
The results of our algorithm and TSS are shown in (g),(h). The shade of the edges
represents the network weights.

to choose βy, βbias, βnet, and ν for the proposed algorithm. For performance evaluation,
we performed ROC analysis while changing the threshold of classification, and computed
the ROC scores (i.e. the areas under the ROC curves).

We compared our method with two existing methods, Tsuda et al.’s method (TSS) [1],

Robust Label Propagation on Multiple Networks 14

Table 1: Protein function prediction using graph-learning algorithms. The left table
reports the ROC scores (areas under the ROC curves) and the weights using Avm and
Ae. The right table is with the two decoy networks, Ar1, Ar2 added. The shown weights
are normalized so that the sum is one.

Method ROC score ūvm ūe

Proposed 1.000 0.377 0.623
TSS 0.999 0.500 0.500

SDP/SVM 0.999 - -

Method ROC score ūvm ūe ūr1 ūr2

Proposed 0.998 0.279 0.408 0.16 0.154
TSS 0.721 0.200 0.000 0.400 0.400

SDP/SVM 0.999 - - - -

and Argyriou et al.’s kernel-based method (SDP/SVM) [2]. The hyper-parameters of TSS
and SDP/SVM are also chosen using five-fold cross-validation. Table 1 summarizes the
results evaluated with the ROC scores averaged over ten trials. Each row represents the
predictive performance as an ROC score and the weights for each of the networks. The
weights for networks are denoted by ūvm, ūe, ūr1, and ūr2.

We used the Wilcoxon test for the statistical significance of the difference among
the ROC scores. Without decoy networks, no significant differences can be observed
among the three methods. Next we statistically tested whether or not each algorithm
lost significant performance due to the presence of noisy networks. Adding the decoy
networks, the performance of TSS degrades significantly (P-value=0.006, respectively).
In particular, TSS assigns large weights to noisy networks, and thereby damages the
prediction performance severely. In contrast, no significant performance loss was seen for
Proposed and SDP/SVM (P-value=0.100 and 0.181, respectively).

In order to further investigate the robustness of the proposed method, we increased
the number of decoy networks. Figure 2 shows the ROC scores of Proposed, TSS, and
SDP/SVM methods. TSS performs considerably less well as the number of decoy networks
increases. However, Proposed and SDP/SVM successfully maintain their performance.

In summary, the Proposed algorithm achieves comparable classification accuracy to
SDP/SVM, yet provides the optimally integrated network Lint(ū).

7.3 Digit Classification

We also tested our algorithm on handwritten digit recoginition. We used 200 images
randomly chosen from the MNIST handwritten digit dataset for each digit. We gave class
labels to 160 of the 200 images, and the remaining 40 images were unlabeled. We posed
a binary classification problem which is to classify the odd digits from the even digits.
Therefore, the number of nodes is n = 2, 000 and the number of labeled nodes is ℓ = 1, 600
for the binary classification task.

The networks we used were constructed as follows. We first computed the k-nearest-
neighbor graphs for k = 1, . . . , 5 and obtained A′

n1, A′
n2, . . . , A

′
n5. The first network

A′
n1 is the 1-nearest-neighbor graph, i.e. An1 = A′

n1. The second network An2 was
constructed by removing the edges included in the 1-nearest-neighbor graph from the
2-nearest-neighbor graph, i.e. An2 = A′

n2 − A′
n1. Similarly we obtained five networks for

Robust Label Propagation on Multiple Networks 15

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

Number of Decoy Networks

R
O

C
 S

co
re

Proposed

TSS

SDP/SVM

Figure 2: Accuracy of prediction against the number of decoy networks.

Table 2: Digit classification using graph-learning algorithms. The upper table reports
the ROC scores (areas under the ROC curves) and the weights using the five net-
works An1,. . . ,An5. The lower table is with the five decoy networks Ar1,. . . ,Ar5 added.
The shown weights are normalized so that the sum is one.

Method Accuracy ūn1 ūn2 ūn3 ūn4 ūn5

Proposed 0.945 0.249 0.212 0.190 0.181 0.168
TSS 0.900 0.000 0.026 0.279 0.295 0.400

SDP/SVM 0.910 - - - - -

Method Accuracy ūn1 ūn2 ūn3 ūn4 ūn5 ūr1 ūr2 ūr3 ūr4 ūr5

Proposed 0.944 0.193 0.168 0.152 0.146 0.137 0.038 0.040 0.042 0.042 0.043
TSS 0.493 0.000 0.000 0.000 0.000 0.000 0.400 0.299 0.184 0.064 0.053

SDP/SVM 0.922 - - - - - - - - - -

Ank = A′
nk − A′

n(k − 1). In addition, in order to illustrate the robustness of the proposed
method, we added five decoy networks, denoted by Ar1, . . . , Ar5. Each decoy network
was constructed by shuffling the order of the node indices of one of Ank, k = 1, . . . , 5. In
total, we obtained ten networks. All of the graph Laplacians derived from these networks
were normalized such that the diagonal elements are one. We performed cross validation
over the labeled nodes to choose βy, βbias, βnet, and ν for the proposed algorithm. For
performance evaluation, we computed the classification accuracy on the test set.

Table 2 summarizes the results evaluated with accuracies averaged over five trials.
Similar to the results on protein function prediction, TSS assigned large weights to noisy
networks, and thereby which degrades the prediction performance of TSS severely (P-
value=0.006). In contrast, Proposed and SDP/SVM did not lose performance seriously
(P-value=0.833 and 0.114, respectively).

Robust Label Propagation on Multiple Networks 16

-2

-1

0

+1

+2

+3

200 400 600 800 1000

Number of Nodes

C
o
m

p
u
ta

ti
o
n
al

 T
im

e
(s

ec
)

10

10

10

10

10

10

Proposed

TSS

SDP/SVM

Figure 3: Computational Time.

7.4 Computational Time

We analyzed the running time of our label propagation algorithm. We constructed five
networks in the similar way for building An1,. . . ,An5 from the digit images. We randomly
chose digit images from the MNIST dataset and varied the number of nodes. The average
running time on five trials are plotted in Fig. 3. SDP/SVM was about 30 times slower
than our algorithm in all cases. Our algorithm was also much faster than TSS. It is
because TSS resorts a MATLAB function fmincon. The function is an implementation
of a gradient-based numerical algorithm which is not known to be very efficient.

7.5 Generalization Performance Against EM Iterations

Finally we investigated the generalization performance against EM iteration of our label
propagation algorithm. We used the two protein networks Avm and Ae and eight decoy
networks for this investigation. The results are plotted in Fig. 4. Initially, our imple-
mentation starts with equal weights, so the generalization performance was low due to
the existence of decoy networks. At the second iteration, the ROC score almost reached
the finally obtained ROC score. Therefore, if one stoped the algorithm at second itera-
tion, our algorithm could become even faster and yet achieve a satisfactory generalization
performance.

8 Conclusions

This paper proposed using Student-t distributions to perform robust label propagation
with different networks including the presence of irrelevant networks. Our algorithm
consists of two phases: weighted network integration and label propagation. The network

Robust Label Propagation on Multiple Networks 17

0.8

0.85

0.9

0.95

1

0 2 4 6 8

Iteration

R
O

C
 S

c
o
re

Figure 4: Generalization Performance Against EM Iterations.

integration is done so that the weights reflect how relevant each network is to the task.
The label propagation is performed on the integrated network. We described the two
operations as the E-step and M-step operations, respectively, of the EM algorithm. Thus
our algorithm is intuitively understandable and statistically well supported.

Although our algorithm already has the compelling property of functioning with the
integrated networks, we are considering how to modify our algorithm so as to produce a
sparse solution. That will be future work for this area.

A Relation between Eqs. (8) and (7)

The rhs of Eq. (8) can be rearranged as

1

Z ′N
(
f ; 0n,

1

βbias

In

)
K∏

k=1

N
(
f ; 0n,

1

βnetūk

L̃−1
k

)

∝ exp
(
−1

2
f⊤ (βbiasIn) f

) K∏
k=1

exp
(
−1

2
f⊤

(
βnetūkL̃k

)
f
)

= exp

(
−1

2
f⊤ (βbiasIn) f − 1

2

K∑
k=1

f⊤
(
βnetūkL̃k

)
f

)

= exp

(
−1

2
f⊤

(
βbiasIn + βnet

K∑
k=1

ūkL̃k

)
f

)

= exp

(
−1

2
f⊤

(
βbiasIn + βnet

K∑
k=1

ūkLk

)
f

)
exp

(
− ϵ

2
βnet1

⊤ū∥f∥2
)

.

Robust Label Propagation on Multiple Networks 18

Since

lim
ϵ→0

exp (−ϵc) = 1 for 0 ≤ ∀c < ∞,

we get

lim
ϵ→0

1

Z ′N
(
f ; 0n,

1

βbias

In

)
K∏

k=1

N
(
f ; 0n,

1

βnetūk

L̃−1
k

)

= N
(
f ; 0n, (βbiasIn + βnetLint(ū))−1

)
.

Therefore, the two priors in Eqs. (7) and (8) are equivalent at the limit ϵ → 0.

B Derivation of Eq. (17)

We here derive Eq. (17). Substituting Eq. (12) into Eq. (11), we get

Jlp(f) =
ℓ∑

i=1

log p(yi|fi) + log Z + logN
(
f ; 0n,

1

βbias

In

)

+
K∑

k=1

log
∫ ∞

0
duk hk(f , uk)

Equation (15) holds immediately after E-step. Therefore,

Jlp(f) =
ℓ∑

i=1

log p(yi|fi) + log Z + logN
(
f ; 0n,

1

βbias

In

)

+
K∑

k=1

∫ ∞

0
duk q̂(uk) log hk(f , uk) +

K∑
k=1

H[q̂(uk)].

From the definition of the function h(·, ·) in Eq. (13),

Jlp(f) =
ℓ∑

i=1

log p(yi|fi) + log Z + logN
(
f ; 0n,

1

βbias

In

)

+
K∑

k=1

∫ ∞

0
duk q̂(uk) log Gamma

(
uk;

1

2
ν,

1

2
ν
)

+
K∑

k=1

∫ ∞

0
duk q̂(uk) logN

(
f ; 0n,

1

ukβnet

L̃−1
k

)
+

K∑
k=1

H[q̂(uk)].

The second term, the forth term and the last term does not depend on f . If we denote
the terms independent on f by ‘const’, we obtain

Jlp(f) =
ℓ∑

i=1

log p(yi|fi) + logN
(
f ; 0n,

1

βbias

In

)

+
K∑

k=1

∫ ∞

0
duk q̂(uk) logN

(
f ; 0n,

1

ukβnet

L̃−1
k

)
+ const.

Robust Label Propagation on Multiple Networks 19

By substituting the defintion of the multivariate Gaussian in Eq. (5), we obtain

Jlp(f) = −βy

2
(f − y)⊤G(f − y) + log Z − βbias

2
∥f∥2

+
K∑

k=1

∫ ∞

0
duk q̂(uk)

(
−ukβnet

2
f⊤L̃kf

)
+ const.

= −βy

2
(f − y)⊤G(f − y) − βbias

2
∥f∥2 +

K∑
k=1

(
− ūkβnet

2
f⊤L̃kf

)
+ const.

= −βy

2
(f − y)⊤ G (f − y) − βbias

2
∥f∥2 − βnet

2
f⊤

(
K∑

k=1

ūkL̃k

)
f + const.

Equation (17) is thus derived.

Acknowledgment

The quality of our manuscript was improved greatly by the suggestions from four anony-
mous reviewers. Their advices helped us to notice new advantages of our algorithm and
some mistakes of our formulation. We sincerely acknowledge the reviewers. We thank
W. Noble and K. Tsuda for making their software and data public. The authors would
like to thank T-PRIMAL participants for their valuable comments. In particular, TK ap-
preciates helpful discussions with Ryohei Fujimaki, Kenichi Kurihara, Shinichi Nakajima,
Rikiya Takahashi and Koji Tsuda. This work was supported by a Grant-in-Aid for Young
Scientists (B), number 18700287, from the Ministry of Education, Culture, Sports, Science
and Technology, Japan and BIRD of Japan Science and Technology Agency (JST).

References

[1] K. Tsuda, H. Shin, and B. Schölkopf, “Fast protein classification with multiple net-
works,” Bioinformatics, vol. 21, no. 2, pp. i59–i65, 2005.

[2] A. Argyriou, M. Herbster, and M. Pontil, “Combining graph Laplacians for semi–
supervised learning,” in Advances in Neural Information Processing Systems 18,
Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006,
pp. 67–74.

[3] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local
and global consistency,” in Advances in Neural Information Processing Systems 16,
S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.

[4] H. Shin, J. Hill, and G. Rätsch, “Graph based semi-supervised learning with sharper
edges,” in ECML 2006. Berlin, Germany: Springer-Verlag, 2006, pp. 1008–1015.

Robust Label Propagation on Multiple Networks 20

[5] T. Zhang, A. Popescul, and B. Dom, “Linear prediction models with graph regu-
larization for web-page categorization,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, Philadelphia, PA,
USA, 2006, pp. 821–826.

[6] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples,” Journal of Machine
Learning Research, vol. 7, pp. 2399–2434, 2006.

[7] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete struc-
tures,” in Proc. 19th International Conference on Machine Learning (ICML2002),
C. Sammut and A. G. Hoffmann, Eds. San Francisco, Morgan Kaufmann, 2002, pp.
315–322.

[8] J. Weston, C. Leslie, D. Zhou, A. Elisseeff, and W. . Noble, “Semi-supervised protein
classification using cluster kernels,” in Advances in Neural Information Processing
Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press,
2004.

[9] A. Kapoor, Y. A. Qi, H. Ahn, and R. Picard, “Hyperparameter and kernel learning
for graph-based semi-supervised classification,” in Advances in Neural Information
Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA:
MIT Press, 2006, pp. 627–634.

[10] T. Zhang and R. Ando, “Analysis of spectral kernel design based semi-supervised
learning,” in Advances in Neural Information Processing Systems 18, Y. Weiss,
B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 1601–1608.

[11] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions.” in Proceedings of the Twentieth International Con-
ference on Machine Learning, T. Fawcett and N. Mishra, Eds. San Francisco, CA:
AAAI Press, 2003.

[12] O. Bousquet, O. Chapelle, and M. Hein, “Measure based regularization,” in Advances
in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf,
Eds. Cambridge, MA: MIT Press, 2004.

[13] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf, “Ranking on data
manifolds,” in Advances in Neural Information Processing Systems 16, S. Thrun,
L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.

[14] B. Schölkopf and A. J. Smola, Learning with kernels. Cambridge, MA: MIT Press,
2002.

[15] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on
Neural Networks, vol. 10, no. 5, pp. 988–999, Sept 1999.

Robust Label Propagation on Multiple Networks 21

[16] C. C. Chang, C. W. Hsu, and C. J. Lin, “The analysis of decomposition methods for
support vector machines,” IEEE Transactions on Neural Networks, vol. 11, no. 4,
pp. 1003–1008, July 2000.

[17] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley
& Sons, 1997.

[18] F. V. Agakov and C. K. I. Williams, “Products of Gaussians and probabilistic minor
component analysis,” Neural Computation, vol. 14, no. 5, pp. 1169–1182, May 2002.

[19] M. Welling, G. Hinton, and S. Osindero, “Learning sparse topographic representa-
tions with products of Student-t distributions,” in Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge,
MA: MIT Press, 2003, pp. 1359–1366.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. New York, USA: Springer
Science+Business Media, LLC, 2006.

[21] R. M. Neal and G. E. Hinton, Learning in Graphical Models. Kluwer Academic
Publishers, 1998, ch. A view of the EM algorithm that justifies incremental, sparse,
and other variants, pp. 355–368.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” J. R. Statistical Society, Series B, vol. 39, pp. 1–38,
1977.

[23] G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. Jordan, and W. Noble, “A statistical
framework for genomic data fusion,” Bioinformatics, vol. 20, pp. 2626–2635, 2004.

[24] D. A. Spielman and S. H. Teng, “Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems,” in Proceedings of the 26th annual
ACM symposium on Theory of computing. ACM Press, 2004, pp. 81–90.

[25] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale multiple kernel
learning,” Journal of Machine Learning Research, vol. 7, July 2006.

[26] A. Argyriou, C. A. Micchelli, and M. Pontil, “Learning convex combinations of con-
tinuously parameterized basic kernels,” in Proc. of the 18th Conference on Learning
Theory, 2005, pp. 338–352.

[27] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork,
“Comparative assessment of large-scale data sets of protein-protein interactions,”
Nature, vol. 417, pp. 399–403, 2002.

