A New Information Criterion for the Selection of Subspace Models

Department of Computer Science, Tokyo Institute of Technology, Japan

Masashi Sugiyama
Hidemitsu Ogawa
Function Approximation

Obtain the optimal approximation $\hat{f}(x)$ to $f(x)$ by using the training examples $\{x_m, y_m\}_{m=1}^M$.

$y_m = f(x_m) + n_m$

$x_m : \text{sample point}$

$y_m : \text{sample value}$
Model

Generally, function approximation is performed by estimating parameters of a prefixed set of functions called a model.

- Polynomial:
 \[\hat{f}(x) = \sum_{n=0}^{N} a_n x^n \]

- 3-layer neural networks:
 \[\hat{f}(x) = \sum_{n=1}^{N} a_n \sigma(x ; b_n) \]

The choice of the model complexity (e.g. order of polynomial, number of units) is crucial for optimal generalization.
Model Selection

Select the best model providing the optimal generalization capability.
Motivation and goal

Most of the traditional model selection criteria do not work well when the number of training examples is small.

e.g. AIC (Akaike, 1974),
BIC (Schwarz, 1978),
MDL (Rissanen, 1978),
NIC (Murata, Yoshizawa, & Amari, 1994)

POINT!

Devise a model selection criterion which works well even when the number of training examples is small.
Setting

\(f \) : learning target function
\(\theta \) : model
\(S_\theta \) : family of functions indicated by model \(\theta \)
\(\hat{f}_\theta \) : learning result function by model \(\theta \)
\(H \) : Hilbert space including \(f \), \(S_\theta \), and \(\hat{f}_\theta \)

Select, from a set of models, the model minimizing

\[
E_n \| \hat{f}_\theta - f \|^2
\]

\(E_n \) : expectation over noise
Least mean squares (LMS) learning

LMS learning is aimed at minimizing the training error

\[\sum_{m=1}^{M} \left| \hat{f}_\theta(x_m) - y_m \right|^2 \]

The LMS learning result function \(\hat{f}_\theta \) is given as

\[\hat{f}_\theta = X_\theta y : \quad X_\theta = \left(\sum_{m=1}^{M} \left(e_m \otimes K_\theta(x, x_m) \right) \right)^+ \]

\(y = (y_1, y_2, \cdots, y_M) \quad + : \text{Moore – Penrose generalized inverse} \)

\(e_m : m - \text{th standard basis in } \mathbb{C}^M \quad (f \otimes g) : \text{Neumann – Schatten product} \)

\(K_\theta(x, x') : \text{reproducing kernel of } S_\theta \quad (f \otimes g)h = \langle h, g \rangle f \)
Assumptions (1)

The mean noise is zero.
The noise covariance matrix is given as $\sigma \cdot I$.

σ is generally unknown.
Assumptions (2)

One of the models gives an unbiased learning result \(\hat{f}_u \):\[
E_n \hat{f}_u = f \quad \Rightarrow \quad \hat{f}_u = X_u y
\]

If \(\{K_H(x, x_m)\}_{m=1}^M \) span \(H \), then \(X_u = \left(\sum_{m=1}^M \left(e_m \otimes \overline{K_H(x, x_m)} \right) \right)^+ \)

\(K_H(x, x') \): reproducing kernel of \(H \)

Roughly speaking, \(\{K_H(x, x_m)\}_{m=1}^M \) span \(H \) if \(M \geq \text{dim}(H) \)

\(M \): the number of training examples
Generalization error and bias/variance

\[E_n \left\| \hat{f}_\theta - f \right\|^2 = E_n \left\| \hat{f}_\theta - f \right\|^2 + E_n \left\| \hat{f}_\theta - E_n \hat{f}_\theta \right\|^2 \]

\[E_n : \text{expectation over noise} \]

- Generalization error
- Bias
- Variance

Diagram:
- \(f \) to \(\hat{f}_\theta \) represents generalization error
- \(\hat{f}_\theta \) to \(E_n \hat{f}_\theta \) represents bias
- \(E_n \hat{f}_\theta \) to \(\hat{f}_\theta \) represents variance
Estimation of bias

\[\| E_n \hat{f}_\theta - f \|^2 = \| \hat{f}_\theta - \hat{f}_u \|^2 - 2 \text{Re} \langle E_n \hat{f}_\theta - f, X_0 n \rangle - \| X_0 n \|^2 \]

\[\approx \| \hat{f}_\theta - \hat{f}_u \|^2 - 0 - \sigma^2 \text{tr}(X_0 X_0^*) \]

\(X_0 = X_\theta - X_u, \quad n = (n_1, n_2, \ldots, n_M)^T, \quad \sigma^2 : \text{noise variance}, \quad X_0^* : \text{adjoint operator of } X_0 \)
Estimation of noise variance

\[E_n \| \hat{f}_\theta - f \|^2 \approx \| \hat{f}_\theta - \hat{f}_u \|^2 - \sigma^2 \text{tr}(X_0 X_0^*) + \sigma^2 \text{tr}(X_\theta X_\theta^*) \]

- Generalization error
- Bias estimate
- Variance

\(\sigma^2 \) : noise variance, \(X_0 = X_\theta - X_u \), \(X^* \) : adjoint operator of \(X \)

\[\hat{\sigma}^2 = \frac{\sum_{m=1}^{M} \left| \hat{f}_u(x_m) - y_m \right|^2}{M - \text{dim}(H)} \]

\(\hat{\sigma}^2 \) is an unbiased estimate of \(\sigma^2 \)
The model minimizing SIC is called the minimum SIC model (MSIC model).

MSIC model is expected to provide the optimal generalization capability.
Validity of SIC

SIC gives an unbiased estimate of the generalization error:

\[E_n \text{SIC} = E_n \left\| \hat{f}_\theta - f \right\|^2 \]

\(E_n \): expectation over noise

cf. AIC gives an asymptotic unbiased estimate of the generalization error.

SIC will work well even when the number of training examples is small.
Illustrative Simulation

\[f(x) = \sqrt{2} \sin x + 2\sqrt{2} \cos x - \sqrt{2} \sin 2x - 2\sqrt{2} \cos 2x + \sqrt{2} \sin 3x \]
\[- \sqrt{2} \cos 3x + 2\sqrt{2} \sin 4x - \sqrt{2} \cos 4x + \sqrt{2} \sin 5x - \sqrt{2} \cos 5x \]

\[x_m = -\pi - \frac{\pi}{M} + \frac{2\pi m}{M} \]
\[y_m = f(x_m) + n_m \]

\[n_m : \text{subject to } N(0,3) \]

compared models: \(\{ S_1, S_2, \ldots, S_{20} \} \)

\(S_N : \text{Hilbert space spaned by } \{ 1, \sin nx, \cos nx \}_{n=1}^{N} \)

defined on \([-\pi, \pi]\)
Compared model selection criteria

- **SIC**
 \[H = S_{20} : \dim(H) = 41 \]

- **Network information criterion (NIC)**
 (Murata, Yoshizawa, & Amari, 1994)
 A generalized AIC

In this simulation, SIC and NIC are fairly compared.

Error = \[\left\| \hat{f} - f \right\|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \hat{f}(x) - f(x) \right|^2 dx \]
\(M = 200 \)

Optimal model \(S_5 \) (Error = 0.11)

MSIC model \(S_5 \) (Error = 0.11)

MNIC model \(S_6 \) (Error = 0.17)
$M = 100$

Optimal model S_5 (Error = 0.37)

MSIC model S_5 (Error = 0.37)

MNIC model S_9 (Error = 0.75)
$M = 50$

Optimal model S_5 (Error = 0.98)

POINT!

SIC works well even when M is small.

MSIC model S_5 (Error = 0.98)

MNIC model S_{20} (Error = 3.36)
Unrealizable case

Estimate a chaotic series \(\{ h_p \}_{p=1}^{200} \) from \(M \) sample values \(\{ y_m \}_{m=1}^M \)

\(M = 100 \)
Estimation of chaotic series

Consider sample point \(x_p = -0.995 + \frac{2}{200} (p - 1) \)
corresponding to the chaotic series \(\{ h_p \}_{p=1}^{200} \)

\[
\hat{h}_p = f\left(-0.995 + \frac{2}{200} (p - 1)\right)
\]
is an estimate of \(h_p \)

Error = \[
\sum_{p=1}^{200} \left| \hat{h}_p - h_p \right|^2
\]

We perform the simulation 1000 times.
Compared model selection criteria

• SIC

\[H = S_{40} : \operatorname{dim}(H) = 41 \]

• NIC

log loss is adopted as the loss function.

\[\{ x_m \}_{m=1}^{M} \text{ are regarded as uniformly distributed.} \]

Compared models: \(\{ S_{15}, S_{20}, S_{25}, S_{30}, S_{35}, S_{40} \} \)

\(S_N : \) Hilbert space spaned by \(\{ x \}_{n=0}^{N} \)

defined on \([-1,1]\)
\[M = 250 \]

SIC

NIC

Mean 0.0021

Mean 0.0022
$M = 150$

SIC

Mean 0.0058

NIC

Mean 0.013
$M = 50$

SIC works well even when M is small.

Mean 0.018

NIC

Mean 0.040
Conclusions

• We proposed a new model selection criterion named the subspace information criterion (SIC).

• SIC gives an unbiased estimate of the generalization error.

• SIC works well even when the number of training examples is small.